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Abstract—This study explores the physiological and psycho-
logical benefits of coherent breathing facilitated by a novel
wearable device, the Balance Bracelet, which utilizes a 6-second
inhalation and exhalation cycle to optimize synchronization be-
tween Heart Rate Variability (HRV) and Respiratory Rate (RR).
Employing advanced Photoplethysmography (PPG) sensors, the
device enables real-time monitoring and feedback, enhancing
autonomic nervous system balance and promoting emotional
stability. Preliminary results indicate that regular practice of
coherent breathing significantly aligns HRV and RR, reducing
stress responses and improving mental health outcomes. The find-
ings underscore the efficacy of integrating controlled breathing
techniques with wearable technology to support daily wellness
and resilience against stress, offering significant implications
for both individuals and clinical practices. This study not only
contributes to the understanding of biofeedback mechanisms
in stress management but also highlights the transformative
potential of wearable health technology in enhancing life quality.

Clinical Relevance—This study highlights the potential
of coherent breathing, facilitated by a wearable device,
in enhancing heart rate variability and respiratory syn-
chronization. The Balance Bracelet could offer clinicians
a non-pharmacological tool to assist patients in managing
stress and improving cardiovascular health. Regular use
of this technique could lead to better outcomes in patients
suffering from stress-related disorders, making it a valu-
able addition to therapeutic strategies.

Index Terms—coherent breathing, biofeedback, wearable tech-
nology, stress management, heart rate variability, PPG sensors.

I. INTRODUCTION

In an era where mental health and stress management
are increasingly crucial, the need for effective, accessible
interventions is more pressing than ever. With the rapid pace
of modern life fueling anxiety and stress, individuals are often
left managing a continuous activation of their sympathetic
nervous system. This can lead to a cascade of health issues,
including sleep disturbances, impaired cognitive function, and
a diminished quality of life. Despite the clear need, many
existing solutions either lack ease of use or are financially out
of reach for those most in need of stress management tools.

Recognizing this gap, our project introduces the Balance
Bracelet, a device designed to foster mental well-being through
coherent breathing—a method proven to harmonize the au-

tonomic nervous system and enhance physiological balance.
This technique, which involves synchronized breath and heart
rates, has been shown to not only elevate heart rate variability
and respiratory sinus arrhythmia but also to improve overall
psychological health and emotional stability. The benefits
extend to visible changes in brain activity, observable through
EEG patterns and fMRI scans, and a reduction in common
stress symptoms such as anxiety and depression.

Current research, including a notable study by [1], un-
derscores the potential of coherent breathing in significantly
enhance psychological well-being, particularly in individuals
with major depressive disorder when combined with practices
like Iyengar yoga. However, the widespread adoption of co-
herent breathing has been hindered by a lack of user-friendly
and affordable tools. The Balance Bracelet aims to bridge this
gap. It is engineered to be cost-effective and straightforward,
suitable for users of all technological backgrounds, and de-
signed to be non-intrusive and comfortable for various skin
types. By offering real-time feedback on achieving coherence,
the Balance Bracelet not only enhances individual practice but
also promotes a broader acceptance and integration of this
powerful stress management technique into daily routines.

Our approach emphasizes simplicity and accessibility, en-
suring that the benefits of coherent breathing are available to
everyone. By syncing heart rate and breath rate, the Balance
Bracelet provides a practical method to improve overall well-
being and reduce stress, making effective stress management
a reachable goal for a diverse population.

II. BACKGROUND

A. The Condition: Modern Stress Challenges

Modern life frequently triggers stress, leading to vari-
ous health issues. The American Psychological Association’s
”Stress in America™ 2023” survey highlights the persis-
tence of stress post-COVID-19, with notable health impacts,
especially among adults aged 35 to 44 [2]. Stress affects
both mental and physical health, causing issues like cognitive
impairments and cardiovascular problems due to the overacti-
vation of the sympathetic nervous system. This overactivation
leads to a range of stress-related disorders, impacting daily
functioning and quality of life [3].



B. Current Treatment Approaches

Current stress management strategies range from pharmaco-
logical solutions to lifestyle changes and psychological ther-
apies. Breathwork emerges as a potent, non-pharmacological
method to mitigate stress. Controlled breathing significantly
reduces symptoms of stress, anxiety, and depression by pro-
moting autonomic balance and enhancing heart rate variability
(HRV) [4], [5]. These benefits are particularly significant as
they highlight breathwork’s ability to influence the autonomic
nervous system, providing a simple yet effective tool for stress
management [6].

C. Technological Innovations in Stress Management

The integration of technology into stress management,
particularly through wearable devices, offers new avenues
for personalized health monitoring. Technologies such as
the HeartRate+ Coherence PRO app and the Somnox Sleep
Robot represent significant advancements, using methods like
photoplethysmography (PPG) and responsive feedback to pro-
mote relaxation and improved sleep patterns [7], [8]. These
technologies exemplify the application of advanced sensor
and feedback mechanisms that cater to individual user needs,
enhancing the accessibility and effectiveness of stress man-
agement tools.

D. Challenges and Implications for Public Health

Despite the benefits of breathwork, its widespread adoption
is hindered by factors like the lack of accessible tools and
general awareness. These include limited access to trained
instructors, lack of public awareness, and difficulty integrating
these practices into daily life [9]. Moreover, societal, and
personal barriers often hinder individuals from seeking out
or sticking to stress management strategies. Overcoming these
barriers could significantly enhance public health outcomes
by reducing stress-related illnesses and healthcare costs [10].
Effective, accessible interventions like the Balance Bracelet,
which promotes coherent breathing, could play a crucial role
in public health strategies.

E. Innovative Solutions: The Balance Bracelet

Addressing the need for accessible stress management tools,
the Balance Bracelet guides users through coherent breathing
to achieve physiological balance. It combines the simplicity
of use with advanced sensor technology to measure HRV and
provide feedback, making stress management accessible to
a broader audience [11]. The device’s potential to improve
mental and physical well-being aligns with ongoing research
and offers a practical solution for everyday stress management.
This alignment with user needs highlights the device’s poten-
tial to serve as a bridge between traditional stress management
techniques and modern technological advancements [12].

III. RELATED WORK

The advancement of wearable technologies for stress man-
agement and health monitoring has proliferated in recent
years, driven by the increasing demand for personal health

management tools. This section reviews several key tech-
nologies and devices that are pertinent to our project’s focus
on developing an innovative coherent breathing device. Each
reviewed technology has been selected based on its relevance
to monitoring heart rate variability (HRV), and respiratory
patterns, or providing biofeedback for stress management.

A. HeartRate+ Coherence PRO App

Developed to enhance user wellness through guided breath-
ing exercises, this app utilizes photoplethysmography (PPG)
sensors to provide biofeedback related to HRV. Its advantages
lie in its user-friendly interface and real-time feedback, pro-
moting relaxation and stress reduction [7].

B. RESPA: Breathing Sensor for Workouts

RESPA focuses on optimizing breathing patterns during
physical activities, offering real-time monitoring and feedback
to enhance workout efficiency and reduce stress. Its wearable
design ensures ease of use during various activities [13].

C. Somnox Sleep Robot

This device is designed to improve sleep quality through
controlled breathing techniques and has been clinically tested
to demonstrate its efficacy in enhancing relaxation and reduc-
ing stress before sleep [8].

D. Oura Ring

A compact and stylish ring that monitors a wide range of
physiological parameters, including HRV. It provides insights
into sleep patterns, activity levels, and overall health, making it
a valuable tool for stress management and wellness monitoring
[14].

E. Garmin Fitness Wearables

Garmin’s wearables incorporate advanced sensors to track
respiration rates and HRV, providing users with detailed health
analytics. These devices are particularly noted for their inte-
gration of health monitoring with daily activity tracking [15].

F. Breeze: Smartphone-based Biofeedback System

This application leverages the smartphone’s microphone to
detect breathing patterns and provides gamified elements to
encourage regular practice of controlled breathing, which is
crucial for managing stress effectively [16].

G. Innovations and Implications

The reviewed technologies highlight the importance of inte-
grating real-time monitoring and feedback in wearable devices
to effectively manage stress and enhance user well-being. They
also underscore the need for devices like the proposed Balance
Bracelet to incorporate seamless integration into daily life,
ensuring that they are not only functional but also conducive
to long-term user engagement and satisfaction.

Future work in this field should focus on enhancing the
accuracy and reliability of physiological monitoring under
various conditions, improving user interfaces to support easier



integration into daily routines, and expanding device capa-
bilities to include more personalized feedback mechanisms.
The ultimate goal is to develop a coherent breathing device
that not only supports stress reduction but also promotes a
deeper connection with one’s physiological state, contributing
to overall health and well-being.

IV. PROPOSED APPROACH

Our team explored several innovative ideas to enhance stress
management through wearable technology, focusing on user-
friendly solutions that integrate seamlessly into daily life. After
extensive brainstorming, we considered the following options:

1) Smart Band for the Wrist: A device equipped with
sensors to monitor heart rate variability (HRV) and guide
breathing.

2) Ear Plugs: Intelligent earplugs designed to block out
stress-inducing noise and provide audio cues for breath-
ing.

3) Finger Cap Sensor: A fingertip device for measuring
pulse and oxygenation to assist with breathing exercises.

4) Necklace Pendant: A discreet wearable that tracks res-
piration and heart rate, signaling engagement in coherent
breathing.

5) Yoga Mat: An interactive mat with built-in sensors to
guide users through yoga and breathing routines.

After careful consideration, we selected the Smart Band
for the Wrist as our top choice. The reasons for this decision
include:

• Sensor Selection & Placement: We chose non-intrusive,
wearable sensors for continuous monitoring. The wrist
provides an ideal location for accurate data collection
without discomfort.

• Feedback Mechanism: The design incorporates haptic
feedback, which, combined with a mobile app, offers
visual and auditory cues to enhance the user experience.
This makes coherent breathing practices more accessible
and engaging.

• Innovative Design Concepts: The stylish and functional
bracelet design includes built-in HRV and respiratory rate
tracking. It integrates into daily routines, allowing users
to manage stress effectively without disruption.

• Data Integration & User Experience: The intuitive
user interface facilitates easy tracking of progress and
understanding of physiological states. Features for data
logging and analysis will provide personalized health
insights.

Our dynamic ideation process led us to focus on developing
the Smart Band for the Wrist. This decision underscores our
commitment to creating a device that not only promotes coher-
ent breathing but also enhances overall user-friendliness and
effectiveness in stress management. We are enthusiastic about
moving forward with this concept and developing a prototype
that positively impacts stress management and health.

Fig. 1. CAD model for the Prototype

V. IMPLEMENTATION

A. Hardware Design

Our project employs the Arduino Mega, renowned for its en-
hanced memory capacity and extensive input/output interfaces,
making it ideal for handling complex tasks. The hardware
configuration includes two Gravity PPG sensors, each serving
a distinct function—one for Heart Rate Variability (HRV) and
the other for Heart Rate (HR) monitoring. This dual-sensor
approach allows for the simultaneous acquisition of HRV and
HR, key indicators of physiological stress response and cardiac
health. For an in-depth understanding of PPG sensors and
their application in clinical physiological measurement, refer
to [17].

Fig. 2. Hardware circuit design

B. Software Design

The software system for the Balance Bracelet consists of
several components that interact to process, analyze, and
visualize physiological data from the users. This section pro-
vides an overview of the software architecture including data
collection, data logging, signal processing, and visualization.

1) Arduino Code for Data Collection: The Arduino Mega
is programmed to handle the input from two Gravity PPG
sensors, collecting data on Heart Rate Variability (HRV) and



Fig. 3. Arduino Mega and PPG Sensors Setup.

Heart Rate (HR). The software reads analog signals from
designated pins configured for each sensor. Data points, each
consisting of a timestamp, HRV, and HR values, are formatted
into a comma-separated value (CSV-like) structure and trans-
mitted over the serial port. This setup facilitates real-time data
acquisition essential for continuous monitoring.

Fig. 4. Heart variability and Heart Rate data collection process

2) Python Serial Data Logging: A dedicated Python script
runs on a host computer connected to the Arduino via a serial

port. This script listens for incoming serial data in the CSV-
like format transmitted by the Arduino. Upon receipt, the
script parses the data and stores it in a CSV file for further
processing. The logging script remains active, collecting data
until manually terminated, ensuring comprehensive session
tracking.

3) FFT and Respiratory Rate Calculation: Another critical
component of our software architecture is the Python script
responsible for analyzing the stored HRV data. The script reads
the HRV time series from the CSV file and applies a Fast
Fourier Transform (FFT) to transform the data into the fre-
quency domain. This transformation is pivotal for identifying
the frequency components that correspond to the respiratory
rate.

• Peak Detection: The script identifies peaks within the
respiratory rate frequency band (typically between 0.1 Hz
and 0.4 Hz), which correspond to the dominant breathing
patterns of the user.

• Respiratory Rate Calculation: From the identified
peaks, the respiratory rate is calculated and expressed in
breaths per minute, providing a quantitative measure of
the user’s breathing rate.

• Visualization: Additionally, the script includes function-
ality to plot the respiratory rate over time, offering a
visual representation of breathing patterns throughout the
data collection period. This feature aids in both user
feedback and further analysis by healthcare professionals.

These software components are designed to be modular
and scalable, allowing for easy updates and integration with
additional sensors or analytic tools as the project evolves.

C. Signal Processing

Signal processing commences with the application of Fast
Fourier Transform (FFT) on the time-domain HRV signal,
converting it to the frequency domain. Subsequently, a band-
pass filter, with a passband specifically tailored to respiratory
sinus arrhythmia (RSA), isolates the frequency component
correlated to the breathing rate (BR). Identifying the RSA-
related peak in the HRV spectrum provides us with the user’s
respiratory rate (RR). This process involves pinpointing the
frequency band associated with the user’s normal breathing
pattern and extracting the RR from the HRV data by locating
the most pronounced peaks within this band. For foundational
theories and applications of FFT in signal processing, see [18].

D. Data Features and Model Architecture

The model employed in our study is a 1D Convolutional
Neural Network (CNN), optimized for real-time deployment
on low-power microcontrollers. This model classifies stress
levels based on a variety of input features derived from the
SWELL dataset [19]. These features, which capture various
aspects of heart rate variability (HRV), are crucial for assessing
the autonomic nervous system’s response to stress.



Fig. 5. Peak-to-Peak data plotting of Respiration Rate.

1) HRV Metrics Explained: The HRV metrics used in
our model are explained below, providing insights into their
significance in physiological stress assessment:

• Mean RR (MEAN RR): The average time interval
between consecutive heartbeats.

• Median RR (MEDIAN RR): The median time interval
between consecutive heartbeats.

• Standard Deviation of RR intervals (SDRR): Measures
the variability in time between heartbeats.

• Root Mean Square of Successive Differences
(RMSSD): Reflects the beat-to-beat variability in heart
rate.

• Standard Deviation of Successive Differences (SDSD):
Variability in successive differences between heartbeats.

• Ratio of SDRR to RMSSD (SDRR RMSSD): A com-
parative measure of long-term vs. short-term variability.

• Heart Rate (HR): The number of heartbeats per minute.
• Percentage of RR intervals differing by more than 25

ms (pNN25) and more than 50 ms (pNN50): Indicators
of heart rate variability.

• Standard deviation of instantaneous (SD1) and con-
tinuous (SD2) RR interval variability: Metrics for
assessing complex patterns in heart rate dynamics.

• Kurtosis (KURT) and Skewness (SKEW): Statistical
measures that describe the shape of the distribution of
RR intervals.

• Relative metrics (MEAN REL RR, ME-
DIAN REL RR, etc.): These are calculated similar
to their absolute counterparts but normalized against
baseline measurements.

• Very Low Frequency (VLF), Low Frequency (LF), and
High Frequency (HF) components: Spectral components
of HRV that relate to different physiological mechanisms.

• Total Power (TP) and frequency ratios (LF HF,
HF LF): Overall HRV and balance between sympathetic
and parasympathetic nervous activity.

• Sample Entropy (sampen): Measures the regularity and
complexity of a time series.

• Higuchi’s Fractal Dimension (higuci): Quantifies the
fractal dimension of HRV, indicating the complexity of

physiological time series data.

These metrics collectively offer a nuanced view of an
individual’s physiological state under stress, serving as the
input features for our CNN model. The output variable,
denoted as Y, categorizes the condition under which the
data was recorded, such as ”no stress,” ”time pressure,” or
”interruption,” which are critical for contextual analysis in
stress response studies.

The architecture of the 1D CNN model is outlined in Table
I, which details the function and dimensionality of each layer,
underscoring its role in feature extraction and classification.

TABLE I
1D CNN MODEL ARCHITECTURE

Layer (type) Output Shape Param #
Conv1D (None, 62, 64) 256

MaxPooling1D (None, 31, 64) 0
Conv1D (None, 29, 128) 24704

MaxPooling1D (None, 14, 128) 0
Flatten (None, 1792) 0
Dense (None, 64) 114752

Dropout (None, 64) 0
Dense (None, num classes) 650

E. Model Training

The model is trained using the Adam optimizer, with a
loss function designed for categorical outcomes. Training
parameters are chosen to balance computational efficiency and
model performance:

• Optimizer: Adam
• Loss Function: Categorical Crossentropy
• Batch Size: 32
• Epochs: 100
• Validation Split: 20%

The model demonstrates robust performance with high train
and test accuracies, and an impressive F1 score reflecting its
balanced precision and recall.

VI. RESULTS AND DISCUSSION

The conducted research centered on evaluating a 1D Con-
volutional Neural Network (CNN) for its efficacy in clas-
sifying stress levels. The model’s performance, powered by
the SWELL dataset, was scrutinized against the backdrop
of its deployment potential within a low-power, real-time
microcontroller environment — a critical consideration for
wearable stress management devices.

A. Model Performance

The model’s architecture, characterized by its 1D CNN
framework, showcased outstanding results, reflected in the
training accuracy of 99.43% and a test accuracy of 99.42%. An
F1 score of 0.9942 further accentuated the model’s prowess,
underscoring its precision and recall balance — a testament
to its reliability in stress-level differentiation.



1) Accuracy and Loss Over Epochs: The consistently high
accuracy levels affirm the model’s reliability, suggesting its
capability to effectively discern between varied stress states
with minimal overfitting risk. The corresponding model accu-
racy and loss over epochs are depicted in Figures 6 and 7.

Fig. 6. Model accuracy evolution through the epochs, showcasing stability
and convergence.

Fig. 7. Model loss reduction over time, indicating effective learning and
optimization.

2) Confusion Matrix: The confusion matrix presented in
Figure 8 offers insight into the model’s classification accuracy
across the various classes within the dataset, revealing a high
degree of precision.

3) F1 Score Interpretation: The near-perfect F1 score indi-
cates that the model not only accurately classifies stress levels
but also maintains a high level of precision and recall balance,
essential for imbalanced datasets where the repercussions of
false negatives and false positives diverge significantly.

Fig. 8. Confusion matrix for stress-level classification, illustrating the model’s
predictive accuracy.

TABLE II
MODEL PERFORMANCE METRICS

Metric Value
Training Accuracy 0.9943 (99.43%)
Testing Accuracy 0.9942 (99.42%)

F1 Score 0.9942

B. Feasibility of Real-Time Implementation

The compact and efficient nature of the proposed 1D CNN
model aligns well with the prerequisites for real-time infer-
encing on low-power microcontrollers. Such alignment paves
the way for its integration into wearable devices, optimizing
for power efficiency and immediate user feedback.

C. Further Considerations and Enhancements

Looking forward, the successful integration of this model
into a real-time wearable device will necessitate meticulous
attention to computational constraints and power utilization,
ensuring sustained operation and user convenience.

In addition to ongoing model optimization, future iterations
may see the inclusion of a broader spectrum of physiological
parameters, potentially enhancing the accuracy and predictive
capability. Leveraging continuous learning mechanisms could
introduce a layer of personalization, adapting the stress detec-
tion algorithm to individual user nuances, thereby elevating
the intervention’s impact.

VII. FUTURE WORK

A. Model Optimization and Web Development

To enhance the efficiency and generalizability of the model,
particularly for real-time deployment on microcontrollers, we
will employ dimensionality reduction techniques such as Prin-
cipal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA). PCA will be used to reduce computational



complexity while retaining essential information, and LDA
will enhance class separation, crucial for accurately differen-
tiating stress levels. Alongside these improvements, we are
developing a web platform that will support users in prac-
ticing coherent breathing techniques, featuring functionalities
like real-time monitoring, historical data logs, and coherence
achievement indicators.

B. Quantifying Coherence for Model Enhancement

To enhance our model’s capability in predicting and de-
tecting the state of coherence using physiological features
similar to those used for stress prediction, further studies
are required. These studies will focus on quantifying the
specific physiological markers associated with coherence, such
as specific patterns in heart rate variability (HRV), respiratory
rate, and perhaps even electrodermal activity (EDA).

C. Web Application Development

The front end of our web application is nearing completion.
It is designed to offer user-friendly interfaces that enable users
to monitor and improve their coherent breathing practices
effectively. The upcoming phase will focus on developing the
backend and server components, which are critical for pro-
cessing data, managing user profiles, and providing interactive
feedback. This development will ensure seamless integration
with the wearable device, creating a comprehensive tool for
stress management and physiological monitoring. For best
practices in data privacy and security in wearable technologies,
see [20].

Fig. 9. Web Application Interface.

D. Testing and Evaluation Plan

1) Functional and Performance Testing: We plan to rig-
orously test each feature of the Balance Bracelet against
defined requirements, assessing sensor reliability, placement
accuracy, and the effectiveness of haptic feedback across
different conditions and activities. Tests will also evaluate
battery life, communication latency, and data accuracy to
optimize performance.

2) Usability Testing: Usability testing will focus on the ease
of use, learnability, and efficiency of task completion. We will
conduct long-term wearability tests and utilize methods like
A/B testing and the System Usability Scale (SUS) to gather
user feedback. Longitudinal studies will also be carried out to
determine the device’s impact on stress levels and its durability
over time.

E. Next Prototype Development

The next iteration of our wearable device, the Balance
Bracelet, will incorporate several advanced components that
enable comprehensive stress management and physiological
monitoring:

• Processor: Acts as the central unit managing operations,
sensor data collection, and network communications.

• DSP Chip: A dedicated digital signal processor that
will perform complex signal processing tasks to derive
respiratory rate from heart rate variability data.

• PPG Sensor: Utilized for continuous monitoring of blood
volume changes to gather detailed HRV data.

• Wi-Fi & BLE Chip: Provides seamless connectivity
options for data synchronization and real-time monitoring
via both Wi-Fi and Bluetooth Low Energy.

• Vibration Motor: Delivers haptic feedback for user
interaction, such as notifying when coherence is achieved
or guiding breathing exercises.

• OLED Display: A small display to provide real-time
feedback and visualizations of the user’s HRV and respi-
ratory rate.

These components will allow the implementation of on-
device software, DSP, and ML inference, making the sys-
tem capable of operating independently without the need for
constant smartphone connectivity. This integration enhances
user experience by providing immediate feedback and enables
the device to function in various environments, promoting
widespread usability.

F. Model Refinement and Deployment

Continuing development will focus on refining the model
to ensure it is lightweight and efficient enough for integration
into the wearable technology, aligning with the computational
limits of the microcontroller used in our device.

G. Personalization and User Adaptation

Adapting the model to individual user profiles through con-
tinuous learning mechanisms will be crucial. This adaptation
aims to enhance personalization, increase user engagement,
and provide tailored stress management recommendations.

H. Testing and Validation

Comprehensive testing in real-world environments and ex-
tensive user studies will be conducted to validate the refined
model’s performance and usability, ensuring its effectiveness
in daily applications.

I. Interdisciplinary Collaboration

Efforts will be made to foster interdisciplinary collab-
orations, addressing challenges such as ergonomic design,
data privacy, and user interaction to ensure a holistic, user-
centered approach in the development of our wearable stress
management device.

These future initiatives are designed to advance the de-
velopment of a sophisticated wearable device that not only
effectively manages stress but also aligns with user preferences



and needs, thereby contributing significantly to enhanced well-
being.
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