
Bio-Inspired Worm Robot: Dynamics, Control and Digital Twin

by

Jay B Menon

A Thesis
Presented in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Approved April 2025 by the
Graduate Supervisory Committee

Sangram Redkar, Co-Chair
Mehran Rehmani, Co-Chair

Thomas Sugar

ARIZONA STATE UNIVERSITY
May 2025

ABSTRACT

This research introduces the design, modeling, and experimental validation of a worm-

inspired robot that emulates the metachronal gait found in nature through a digital

twin framework. Leveraging principles from bio-inspired robotics, the robot features

five degrees of freedom, enabling adaptive locomotion across varied environments.

Kinematic and dynamic models are developed utilizing Geometric (Clifford) Algebra,

complemented by physics-based simulations carried out in Nvidia Isaacsim and MAT-

LAB. The digital twin facilitates continuous data logging from embedded sensors,

which enhances performance optimization and supports adaptive control strategies.

Furthermore, the study explores the scope of a range sensor for real-time environmen-

tal feedback, improving the robot’s adaptability. This work emphasizes the potential

of bio-inspired robotic systems to tackle locomotion challenges in complex terrains,

with significant implications for applications in search and rescue, industrial inspec-

tion, and beyond.

i

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my parents and my grandmother, Dr.

Sangram Redkar, Dr. Mehran Rahmani, Dr. Thomas Sugar, Apoorva Rahul Uplap,

and TSMC Arizona Corporation for their unwavering motivation and guidance

throughout my research. I would also like to extend my thanks to Aakash, Kevin,

Saanvi, Srishti, Akshay, and all my friends who supported me in achieving this

milestone in my thesis.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

Motivation . 1

Multi-Modal Locomotion in Nature . 3

Snake and Worm-Inspired Robotics . 5

Locomotion Mechanisms in Snake Robots . 9

Digital Twins in Robotics . 12

Relevance to Snake and Worm Robots . 16

Scope and Overview . 17

2 DESIGN . 19

Design Components . 19

3 KINEMATICS . 23

Forward Kinematics using Rotor Algebra G+
3,0,0 23

Rotor Definition . 24

Forward Kinematics Using Motor Algebra . 25

Motor Derivation for a Single Link. 25

Sequential Composition . 26

Forward Kinematics Using Screw Theory . 26

Inverse Kinematics Using a Trigonometric Approach for Mecha-

tronal Gaits . 28

Gait 1 Derivation. 29

Gait 2 Derivation. 32

iii

4 DYNAMICS . 33

Non-Linear Dynamics using Euler-Lagrange Equation 33

Dynamics using Motor Algebra . 36

5 CONTROL . 48

PD Control . 49

PID Control . 50

Fractional PID Control . 53

Sliding Mode Control (SMC) . 55

6 EXPERIMENTATION & RESULTS . 58

Inverse Kinematics Validation in Isaac Sim . 59

Range Sensor Integration in Isaac Sim . 60

MATLAB implementation . 61

Digital Twin Implementation . 64

7 CONCLUSION & FUTURE WORK . 73

REFERENCES . 75

APPENDIX

A RAW DATA AND CODE . 81

iv

LIST OF TABLES

Table Page

6.1 Comparison of Desired and Actual Displacement Values in Isaac Sim . . 61

6.2 Comparison of Desired and Actual Displacement Values in Isaac Sim

and Real World (cms) . 68

v

LIST OF FIGURES

Figure Page

1.1 Bio-inspired Robotics and Robotics-inspired Biology (Gravish and Lauder,

2018) . 2

1.2 Types of Bio-inspired Robots That Fly, Run, Swim and Crawl (Gravish

and Lauder, 2018) . 3

1.3 Active Cord Mechanism (ACM) III (Hirose and Yamada, 2009) 7

1.4 ACM-S1 (Wakimoto et al., 2003) . 9

1.5 Different Locomotion Mechanisms in Snake (Transeth et al., 2009) 10

1.6 Inchworm Locomotion (Hu et al., 2023) . 11

2.1 Hiwonder LX-16A Servo Motor . 20

2.2 N-link Worm Robot . 21

2.3 5 DOF Worm Robot Design in Nvidia Isaac Sim . 21

3.1 Traversal Cycle of the Caterpillar Robot . 29

3.2 Gait 1. 30

3.3 Gait 2. 31

4.1 4 DOF Manipulator Model (Ghanbari and Noorani, 2011) 34

5.1 PD Implementation for Kp = 0.7 and Kd = 0.009 . 51

5.2 PID Implementation for Kp = 0.7, Ki = 1.0 and Kd = 0.009 53

5.3 FPID Implementation for λ = 0.8, µ = 0.4, Kp = 0.7, Ki = 1.0 and

Kd = 0.009 . 56

6.1 5 DOF Worm Robot in Isaac Sim . 58

6.2 Gait 1. 59

6.3 Gait 2. 60

6.4 Joint Angles for η = 2 cm . 60

6.5 Range Sensor Mounted on Robot . 62

vi

6.6 Locomotion Timeline with the Sensor . 62

6.7 Joint Angles Based Comparison of Controller Performance 63

6.8 Joint Velocities Based Comparison of Controller Performance 63

6.9 PD Controller With Inverse Kinematic Gaits (Trajectory). 65

6.10 PD Controller With Inverse Kinematic Gaits (Error) 66

6.11 PID Controller With Inverse Kinematic Gaits (Trajectory) 66

6.12 PID Controller With Inverse Kinematic Gaits (Error) 67

6.13 FPID Controller With Inverse Kinematic Gaits (Trajectory) 67

6.14 FPID Controller With Inverse Kinematic Gaits (Error) 68

6.15 Steel on Wood Implementation (µs = 0.6, µk = 0.5) 69

6.16 Steel on Paper Implementation (µs = 0.4, µk = 0.3) 70

6.17 Steel on Rugged Fabric Implementation (µs = 0.5, µk = 0.4) 71

6.18 Steel on Smooth Fabric Implementation (µs = 0.3, µk = 0.2) 72

vii

Chapter 1

INTRODUCTION

Motivation

Designs found in nature have consistently influenced robotics research, especially

in emulating locomotion strategies inspired by creatures like snakes and their ability to

adapt to dynamically changing environments. We refer to the multidisciplinary field

that combines biology, engineering, robotics, and materials science to tackle challenges

in complex and unpredictable environments as bio-inspired robotics. This approach

promotes collaboration among interdisciplinary teams of biologists and roboticists

who investigate and formulate hypotheses about how specific organisms address com-

plex engineering challenges, especially in the realm of robot locomotion. Furthermore,

a nuanced distinction exists between bio-inspired robotics and robotics-inspired bi-

ology as shown in Figure 1.1. Bio-inspired robotics pertains to the application of

mechanisms derived from biological organisms to create robots that emulate their

forms and functions. In contrast, robotics-inspired biology leverages robotics and

mechanical models to examine biological principles, enabling scientists to test hy-

potheses related to animal locomotion, biomechanics, and control systems (Gravish

and Lauder, 2018).

Robotic design increasingly draws from biological organisms, utilizing nature as

a blueprint to enhance traditional engineering methodologies and improve control

mechanisms. This biomimetic approach is influenced by a diverse array of biologi-

cal systems, encompassing both flora and fauna, which inform the locomotion and

operational strategies of robots. By observing and replicating the walking, swim-

1

Figure 1.1: Bio-inspired Robotics and Robotics-inspired Biology (Gravish and Lauder,

2018)

ming, crawling, or flying behaviors of these organisms, engineers can develop robots

that exhibit greater efficiency, adaptability, and functionality in various environments.

There are various types of bio-inspired robots, such as legged mobile robots (bipeds,

quadrupeds, or multi-legged robots), wheeled robots, and flying robots (Unmanned

Aerial Vehicles (UAVs)). Some are also inspired by monkeys, fish, and snakes, or by

feedback control mechanisms found in plants (Fukuda et al., 2018; Pettersen, 2017).

Some of the bio-inspired robots are shown in Figure 1.2.

For example, Rhex is a six-legged robot designed with inspiration drawn from

the locomotion of cockroaches while in contrast, the use of robotic fish models to

investigate the schooling behavior and maneuverability of real fish serves as a prime

example of robotics-inspired biology. Additionally, researchers have investigated the

capabilities of octopus arms using emulated models, exploring the functional mor-

phology of internal tissues and focusing on the sinusoidal arrangement of the nerve

cord and the specific insertion points of muscle fibers. (Gravish and Lauder, 2018;

2

Figure 1.2: Types of Bio-inspired Robots That Fly, Run, Swim and Crawl (Gravish

and Lauder, 2018)

Margheri et al., 2012).

Multi-Modal Locomotion in Nature

The study of multi-modal locomotion in various animal species has historically

served as a significant source of inspiration for the development of robotic systems,

particularly in the context of navigating complex and unstructured environments,

such as those found in disaster-affected areas and extraterrestrial terrains. Numerous

biological organisms have evolved the ability to transition seamlessly between aerial,

terrestrial, and aquatic modes of locomotion, thereby optimizing their movements

for energy efficiency and adapting to diverse environmental challenges. Additionally,

there are some animals that can thrive in two different environments simultaneously

(Lock et al., 2013).

3

Rather than relying solely on conventional design methodologies, the application

of bio-inspired robotics leverages insights gained from these evolved species that have

demonstrated proficiency in traversing challenging landscapes. Bio-inspired robots

can also navigate such environments without relying on GPS or traditional navigation

methods (Bogue, 2019). AntBot is a bio-inspired navigation robot application based

on desert ants, which navigate extreme desert conditions using a celestial compass.

This involves utilizing polarized light in the sky to determine direction, as well as optic

flow, which counts the steps taken and measures ground movement through visual

input to assess distance. This approach has the potential to reduce the reliance on

GPS for outdoor robotic navigation (Bogue, 2019).

Other bio-inspired robots include the AquaMAV (Aquatic Micro Air Vehicle),

inspired by plunge-diving birds, features reconfigurable wings and a CO2-powered

water jet enabling it to escape from water. The DALER (Deployable Air-Land Ex-

ploration Robot), inspired by the vampire bat, possesses moveable tips on its wings,

allowing it to crawl along the ground. Similarly, the Guillemot-Inspired VTOL (Ver-

tical Takeoff-and-Landing) Robot emulates a seabird’s ability to fly, dive, and swim,

reflecting a life cycle from nesting to foraging. Additionally, numerous aquatic robots

draw inspiration from marine life. MIT’s RoboTuna focuses on fish population studies

and vortex control, while the CIA’s Robotics Catfish, affectionately named ”Charlie,”

serves as an underwater intelligence-gathering device. Other notable examples include

the iSplash-II robotic fish and SoFi, which employs a fluidic elastomer actuator to

navigate coral reefs. Jollbot and Glumper are bio-inspired jumping robots that use

a glide and landing mechanism to traverse rough terrain (Boyer et al., 2012). Lastly,

dragonfly-inspired micro air vehicles exhibit remarkable maneuverability, exemplified

by the CIA’s Insectothopter designed for espionage (Bogue, 2019). These capabilities

position bio-inspired robots as transformative tools for disaster management, signifi-

4

cantly enhancing mobility, functionality, and safety in high-risk scenarios (Balla et al.,

2024) (Hunt, 2010).

Furthermore, the development of computer simulations for proposed prototypes,

such as insect-inspired walking mechanisms, facilitates the visualization of all poten-

tial modes of action, ultimately reducing costs associated with physical prototyping

(Taubes, 2000). We will discuss how real-time simulations for robot locomotion have

proven to be beneficial for robotics ahead.

Snake and Worm-Inspired Robotics

Snakelike (Chirikjian, 2020) robots have been a pivotal area in robotics focus-

ing on their diverse applications in search and rescue operations, firefighting, and

maintenance tasks in challenging environments where conventional robots often en-

counter limitations. These biological organisms exhibit adaptive gaits that enable

them to navigate challenging terrains, such as rough ground, narrow passages, low-

friction surfaces, and water. Recent studies have focused on designing and developing

robotic systems that emulate the unique locomotion and movement strategies found

in nature. Researchers are particularly inspired by the physiology and kinematic

mechanisms of snakes, inchworms, and caterpillars in creating snake robots. Snakes

traverse using advanced movement techniques, such as lateral undulation, sidewind-

ing, concertina, and rectilinear locomotion. This allows them to navigate a variety

of environments with remarkable efficiency showing a remarkable degree of flexibil-

ity while maintaining stability, thereby presenting an ideal framework for modular

robotic designs. Furthermore, the unique scalation pattern of snake skin confers a

directional frictional advantage, facilitating forward locomotion with minimal energy

expenditure (Transeth et al., 2009). In contrast, inchworms and caterpillars exhibit

peristaltic and crawling gaits that inform advancements in soft robotics and compli-

5

ant motion control, particularly in constrained and irregular environments. This is

vital not only in disaster response scenarios but also in the inspection of pipelines

and other infrastructures, underscoring the significant potential of biomimetic robotic

systems in enhancing operational efficiency and safety (Ab Rashid et al., 2020).

The study of snake locomotion has significantly influenced the development of

snake robots, beginning with early qualitative research by Gray (1946). The first

functional biologically inspired serpentine robot, the Active Cord Mechanism (ACM

III) (Hirose and Yamada, 2009). This 2-meter-long robot had 20 revolute joints

with 1 degree of freedom (DOF) each and utilized passive casters for movement,

mimicking serpentine undulation through alternating lateral joint motions. Since

then, various multi-link articulated robots, such as snake robots, hyper-redundant

robots, and G-snakes, have been developed. These robots may incorporate passive

wheels to enhance traction and reduce friction or function without wheels, relying

on frictional anisotropy akin to real snake scales (Transeth et al., 2009). Recent

advancements in snake-inspired robotics over the past 10 to 15 years have been driven

by the need for flexible, modular, and terrain-adaptive robotic systems. The complex

kinematic and dynamic modeling of these robots, due to their high degrees of freedom

(DOFs), necessitates the creation of mathematical models and control algorithms to

optimize locomotion.

Snake robots’ unique locomotion abilities have led to the development of various

mathematical models to study their movement dynamics (Liljebäck et al., 2010).

These robots showcase a range of locomotion modalities, including hopping (Fukuoka

and Kimura, 2009), wheeling (Shiotan et al., 2006), brachiating (Davies et al., 2018),

slithering (Seeja et al., 2022), walking (Playter et al., 2006), swimming (Dudek et al.,

2005), and metachronal locomotion (Ghanbari et al., 2008). Their slender bodies

allow them to maneuver in confined spaces, making them particularly well-suited for

6

Figure 1.3: Active Cord Mechanism (ACM) III (Hirose and Yamada, 2009)

applications such as pipe inspection, search and rescue, and medical missions (Bi

et al., 2023; Mehringer et al., 2017; Choset et al., 2000). These robots can crawl,

slither, and swim, allowing them to effectively navigate complex environments and

overcome various obstacles. Common traversal techniques include lateral undulation,

sidewinding, concertina, and rectilinear locomotion.

Traditional snake robots, such as Hirose’s ACM-III and later models like the ACM-

R4, have demonstrated effective locomotion using both passive and active wheel mech-

anisms (Yamada and Hirose, 2006). However, these designs are unsuitable for tightly

confined spaces, like those encountered during pipe inspections. To address this chal-

lenge, Fjerdingen et al. (2009) introduced PIKo, an articulated, snake-inspired pipe

inspection robot equipped with active wheels and two degrees of freedom in its joints.

7

This modular robotic system enhances adaptability to different terrains, enabling it

to navigate sharp turns, vertical climbs, and constricted pipe segments. The design

allows for both horizontal and vertical locomotion; the robot climbs vertically by using

an opposing-push mechanism that relies on friction between the wheels and the inner

walls of the pipe. Additionally, Wakimoto et al. (2003) developed a micro snake-like

robot specifically for inspecting small pipes. The snaking drive locomotion has proven

to be an effective method for pipe inspection robots, especially in environments where

pipe diameters vary significantly.

Wakimoto et al. (2003) developed robot for pipe inspections utilizes lateral undu-

lation locomotion, which is the fastest and most common form of movement in snakes.

In this mode of operation, the robot’s joints are driven by continuous sine wave sig-

nals traveling from the head to the tail. Forward motion is achieved through the

friction between the robot and the inner walls of the pipe. Another innovative work

was the introduction of ACM-S1, a waterproof and dustproof snake robot specifically

designed for applications such as pipe inspection, search and rescue, and underwater

exploration. Unlike previous snake robots that utilized passive wheels, the ACM-S1

features a 3-DOF bending and expanding joint mechanism as shown in Figure 1.6.

This allows it to perform inchworm-like crawling over uneven surfaces and angleworm-

like retraction for smooth ground movement. By eliminating the need for ratcheted

wheels, the system relies instead on elastic rods and slide screw actuation, proving

to be highly adaptable to complex environments (Sugita et al., 2008). Another ap-

plication is the Small Pipe Inspector, an autonomous and tether-free robotic system,

is engineered for the inspection of long and complex pipelines with small diameters,

including applications in oilfield coiled tubing, refinery heat exchangers, and furnace

tubes (Jamoussi, 2005).

8

Figure 1.4: ACM-S1 (Wakimoto et al., 2003)

Locomotion Mechanisms in Snake Robots

Lateral undulation, also known as serpentine crawling, involves a continuous wave-

like motion that propagates from the front to the rear of the snake’s body, allowing

it to push against the contours of the terrain as shown in Figure 1.5a. This method

is particularly efficient in rough terrains where there are push points, such as rocks

and bumps, that provide necessary traction. To maintain motion, at least three

push points are required. Sidewinding locomotion occurs when the snake lifts parts

of its body off the ground, creating a rolling movement at an angle as shown in

Figure 1.5b. This technique is effective for low-friction surfaces like sand and mud.

Concertina locomotion, or accordion motion, involves the snake stretching and folding

9

(a) Lateral Undulation and Concertina Lo-

comotion

(b) Sidewinding

Figure 1.5: Different Locomotion Mechanisms in Snake (Transeth et al., 2009)

its body alternately to propel itself forward. This method is particularly effective in

tight spaces, such as pipes, tunnels, and branches, but requires high friction to push

against the substrate. Other snake gaits include sinus-lifting, a modification of lateral

undulation where sections of the trunk lift off the ground for optimized propulsion;

skidding or slide-pushing, which is an energy-inefficient zigzag movement used on low-

friction surfaces; swimming, where the snake undulates its body similar to eels for

aquatic locomotion; and tree climbing, wherein thin-bodied snakes use vertical lateral

undulation to ascend by wrapping around tree branches (Transeth et al., 2009).

The flexible and compliant locomotion typified by inchworms involves techniques

of anchoring, extending, and contracting their bodies. Such adaptive deformation

facilitates precise directional adjustments in three-dimensional space and promotes

efficient movement in confined environments. This bio-inspired methodology holds

significant potential for soft robotics, allowing for smooth navigation across complex

terrains (Zhang et al., 2019). MagWorm is a biologically-inspired, magnetically actu-

ated worm-like soft robot that employs permanent magnets for both actuation and

10

Figure 1.6: Inchworm Locomotion (Hu et al., 2023)

driving mechanisms and is engineered for rapid crawling locomotion, mimicking the

movements of real worms while also enabling streamlined fabrication and adaptive

mobility (Niu et al., 2021).

Inchworm locomotion is characterized by a methodical movement where the an-

terior limbs grasp the ground, followed by a contraction of the body as the posterior

limbs advance, culminating in the release of the front legs. This controlled, step-

wise locomotion contrasts with caterpillar motion, which employs a vertical travel-

ing wave to facilitate movement from posterior to anterior, leveraging small legs for

traction. The latter approach is recognized for its stability, slow pace, and energy

efficiency (Transeth et al., 2009). A significant feature of these robotic systems is

their biomimetic inspiration; for example, worms enact a metachronal gait, where

limb movements are synchronized, effectively creating a wave-like motion (Ghanbari

et al., 2008).

Mathematical modeling is vital in comprehending and enhancing snake robot lo-

comotion. Prevailing models have concentrated on planar movement through New-

ton–Euler equations or Lagrangian approaches. Yet, the complexity of frictional

interactions, stick-slip transitions, and contact forces with the environment presents

11

a daunting challenge for fully articulating the 3D dynamics of snake robots (Transeth

et al., 2006)(Lipták et al., 2016). The study by Noorani et al. (2015) focuses on the

development of a crawling robot inspired by caterpillars. Its locomotion mechanism

relies on a vertical trapezoidal body wave in the vertical plane, which enables efficient

forward movement. The robot’s dynamics are represented by a planar five-link chain

model, with motion equations derived for each segment with experimental validation.

Some studies have also introduced non-smooth 3D modeling techniques to overcome

frictional limitations (Transeth et al., 2006).

Digital Twins in Robotics

A Digital Twin (DT) is a virtual model of a physical or conceptual entity that

continuously updates to reflect real-world changes, enabling simulation, analysis, and

predictive decision-making. This entity is primarily a physical object, although con-

ceptual objects can also be digitally represented. The term ”contextualized” implies

that the software model can accurately replicate the behavior of the physical object,

allowing for comprehensive analysis, study, and prediction of its actions within the

specific environmental constraints it operates in (Crespi et al., 2023).

The origins of Digital Twin (DT) technology can be traced back to NASA’s Apollo

13 mission in 1970, when a physical twin system was utilized to simulate and address

challenges faced by the spacecraft in real time. The formal concept of Digital Twins

was first articulated by Dr. Michael Grieves in 2002 at a Society of Manufacturing

Engineers (SME) conference at the University of Michigan. Initially referred to as

the ”Mirrored Spaces Model” (MSM), it was later renamed the Information Mirroring

Model. In 2012, John Vickers from NASA officially coined the term ”Digital Twins”

(DTs). This innovative approach laid the groundwork for the modern understanding

of digital twins (Rajamurugu and Karthik, 2022).

12

Initially the concept of DTs revolved significantly around Product Lifecycle Man-

agement (PLM) to encompass real time interconnected cyber physical systems and

it has come a long way from there since. They leverage Internet of Things (IoT),

Artificial Intelligence (AI) and communication technologies such as 5G and 6G to

enable this seamless data exchange within (Ngadi et al., 2023). It was introduced to

enhance the manufacturing process simulations and from there DTs have eventually

transitioned to cloud based distributed systems that enables cross domain integration

including smart cities, healthcare and energy management.

Digital twins can be categorized into several types. The product twin repre-

sents a product’s entire life cycle, providing real-time data from design to full func-

tionality. Next comes the data twin, exemplified by Google Maps, which offers a

digital representation of the Earth’s surface and integrates real-time traffic data to

enhance navigation. Systems twins model the interactions between physical and digi-

tal processes, encompassing areas like manufacturing, supply chain management, and

customer experiences. Lastly, infrastructure twins depict physical structures such

as highways, buildings, or stadiums, facilitating their monitoring and management.

Similarly, Grieves also formalized a structured Digital Twin framework in his work

for virtual factory models. His work introduced three fundamental DT components-

Digital Twin Prototype (DTP), Digital Twin Instance (DTI) & Digital Twin Aggre-

gate (DTA). DTP is a virtual model used during the design and development phase

of a product. DTI is a real-time digital counterpart of a physical object, continu-

ously updated with live data. Finally, a DTA is A system that integrates multiple

DTIs, enabling large-scale simulations and advanced decision-making, commonly re-

ferred to as Digital Twin Computing (DTC) (Crespi et al., 2023; TechnoHacks, 2024;

McKinsey&Company, 2024).

Digital twin technology plays a crucial role in enhancing the performance and

13

reliability of manufactured products by allowing for the prediction of their future be-

havior and potential failures. This capability facilitates timely preventive measures to

mitigate such issues. Furthermore, it contributes to the continuous improvement and

development of the product. Tesla, Inc. exemplifies the application of digital twin

technology, as every vehicle they sell is equipped with its own digital twin. Daily

data collected from the car’s sensors is analyzed to derive valuable insights, which

are subsequently utilized to prevent errors and optimize performance. These insights

inform the preparation of software updates for their vehicles, ensuring that users

receive enhancements based on real-time data analysis (Rajamurugu and Karthik,

2022). Digital twins utilize simulation as a fundamental technology for forecasting

future performance and determining optimal solutions (Biller et al., 2022). Unlike

traditional modeling and simulation techniques, digital twins are characterized by

their real-time synchronization with their physical equivalents and a constant data

stream from sensors (Taylor et al., 2021; Kenett and Bortman, 2022). The appli-

cation of digital twins is expanding across diverse sectors, including smart farming,

manufacturing, and urban planning (Dineva and Atanasova, 2022).

There have been various applications of digital twins across the manufacturing sec-

tor such as Flex-Cell Digital Twin and Gunnerus Digital Twin. The Flex-Cell Digital

Twin is a modular robotic system designed for precision assembly, featuring Kuka and

UR5e robotic arms with OnRobot grippers, with synchronized execution and trajec-

tory visualization. It incorporates discrete positioning commands, deviation checking

for alignment, and virtual commissioning for pre-implementation simulation. While

the Gunnerus Digital Twin showcases the use of maritime digital twins, focusing on

ship maneuverability, anomaly detection, and predictive maintenance. It serves as a

test platform for co-simulation frameworks that enhance data-driven decision-making

and scenario analysis in dynamic marine environments. It operates as a ”Digital

14

Shadow”, continuously receiving live data from the physical vessel without control-

ling it. The system integrates various sensors, including GPS, motion reference units,

wind sensors, and engine data, to improve tracking, navigation, and maintenance

(Kulik et al., 2024).

A wide array of software tools and technologies has emerged to facilitate the in-

tegration of Digital Twins (DTs) across various sectors, enhancing activities such as

modeling, real-time monitoring, data management, and simulation. Modeling tools

like ANSYS Twin Builder, Siemens NX, SolidWorks, AutoCAD, and CATIA are vital

for creating geometric and structural representations. In addition, advanced simula-

tion capabilities are offered by tools such as Nvidia Isaac Sim, MuJoCo, MATLAB,

Simulink, and MARC. In industrial contexts, cloud-based service platforms such as

Siemens MindSphere, ThingWorx, and Azure IoT Hub enhance IoT integration, pre-

dictive maintenance, and performance analysis. For behavioral modeling and control,

CoDeSys and MWorks play a critical role in real-time motion management, while

AI-driven platforms like ThingWorx and PTC’s AI Edge Computing augment predic-

tive analytics. Connectivity solutions like Predix, Cisco Jasper, and Microsoft Azure

Digital Twin further bolster industrial IoT applications by merging sensor data with

cloud services. Collectively, these technologies significantly enhance the lifecycle of

Digital Twins, broadening their applications in sectors like manufacturing, aerospace,

healthcare, and smart cities, thereby promoting the advancement of intelligent and

interconnected systems (Qi et al., 2021).

NVIDIA Omniverse Isaac Sim is a sophisticated robotics simulation toolkit that

facilitates the creation of digital twins and virtual environments for robotic appli-

cations. It provides essential features for physically accurate simulations, synthetic

dataset generation, sensor data simulation, and domain randomization. Built on

the Omniverse Kit SDK and utilizing the USD file format for scene representation,

15

Nvidia Isaac Sim leverages Omniverse Nucleus for content accessibility. This toolkit is

particularly beneficial for warehouse automation, enhancing the integration and man-

agement of autonomous robotic systems to improve operational efficiency. It supports

both C++ and Python via compiled plugins and bindings, accommodating diverse

workflows—ranging from standalone Omniverse applications to Visual Studio Code

extensions and Jupyter Notebooks. Additionally, compatibility with ROS and ROS2

enables hardware-in-the-loop capabilities for seamless sim-to-real transfer (NVIDIA

Corporation, 2025).

Relevance to Snake and Worm Robots

Digital Twin (DT) technology presents substantial opportunities for advancing the

design, control, and deployment of snake and worm-inspired robots. These robots typ-

ically exhibit a high degree of freedom (DOFs) due to their segmented and modular

architectures, resulting in complex kinematic and dynamic behaviors that are par-

ticularly sensitive to environmental interactions. Through real-time synchronization

with physical snake and worm robots, Digital Twins facilitate continuous performance

monitoring, predictive maintenance, and adaptive control adjustments. For instance,

as a snake robot navigates a confined pipe or uneven terrain, its digital counter-

part can simulate the forces acting on each segment, predict potential failure points,

and propose optimized gait patterns or control parameters to enhance movement

efficiency.

Moreover, Digital Twins enable pre-deployment testing of locomotion strategies

under virtual conditions that closely approximate real-world environments. This ca-

pability is particularly advantageous for snake and worm robots intended for deploy-

ment in situations that are challenging, hazardous, or impossible to physically repli-

cate in laboratory settings—such as deep-sea exploration, nuclear facility inspections,

16

or disaster response scenarios.

Additionally, Digital Twin platforms like Nvidia Isaac Sim facilitate the generation

of synthetic datasets that are essential for training machine learning algorithms fo-

cused on perception, localization, and adaptive control within complex environments.

For snake and worm robots, this advancement enhances their real-time decision-

making capabilities when they encounter unforeseen obstacles or transition between

locomotion modes (e.g., from slithering to climbing).

In conclusion, by effectively bridging the chasm between virtual modeling and

physical reality, Digital Twins contribute to the development of safer, more efficient,

and highly adaptable robotic systems capable of addressing complex challenges across

diverse operational domains.

Scope and Overview

The aim of this thesis is presented as follows:

1. Development of a worm robot with five degrees of freedom that simulates the

metachronal gait patterns observed in nature, offering potential applications across

various fields.

2. Utilizing Geometric Algebra to model the kinematics and dynamics of this robot.

3. Implementing Nvidia Isaac Sim and MATLAB to experimentally validate the sys-

tem with accurate physics modeling.

4. Creating a digital twin of a gait-based inchworm robot that includes a physical

robot working in conjunction with its simulation running in real-time while logging

data from the sensors.

5. Testing the physical worm robot on various surfaces and comparing its perfor-

mance with results from Nvidia Isaac Sim.

6. Future planning to incorporate a sidewinding mechanism for the robot and stream-

17

ing range sensor data into Isaac Sim

Chapter 2 focuses on the mechanical and system-level design of the worm robot.

The chapter details the design criteria, structural layout, actuation components, and

sensor integration.

Chapter 3 presents the theoretical underpinnings of the worm robot’s kinematics.

It discusses various approaches—from rotor algebra to screw theory—for describing

forward and inverse kinematics. These methods aim to replicate natural metachronal

gaits forming the basis for the gait patterns tested in later chapters.

Chapter 4 delves into the worm robot’s dynamic modeling, including nonlinear

equations of motion and advanced formulations using Clifford (geometric) algebra.

The chapter also addresses trajectory generation and the computations involved in

both forward and inverse dynamics. These analyses are central to predicting system

behavior and formulating robust control strategies.

Chapter 5 examines multiple control strategies for the worm robot, including

PD, PID, fractional PID, and sliding-mode control. The chapter explains why these

methods are suitable for highly nonlinear, high-DOF systems, and discusses how each

approach can be tuned and evaluated for optimal performance.

Chapter 6 describes the experimental validation and presents results from both

physical and simulated tests using Nvidia Isaac Sim and MATLAB.

Chapter 7 summarizes the primary contributions of the research while proposing

avenues for improving the robot’s performance, and discusses future directions such

as integrating more advanced sensing or control strategies.

18

Chapter 2

DESIGN

Design Components

To develop the digital twin, we must first observe the components in the actual

worm robot. The robot has five LX-16A servos attached from Hiwonder. The Hi-

wonder LX-16A servo motor is a compact, high-performance actuator designed for

precision and durability in robotic systems. Weighing just 54 grams and measuring

45.22 × 24.72 × 36.3 mm, it is ideal for space-constrained applications. The servo

features a rotation range of 0–240° in servo mode and offers continuous rotation in

gear mode, achieving a speed of 0.19 seconds per 60° at 7.4 V with torque outputs

of 17 kg·cm at 6 V and 19.5 kg·cm at 7.4 V. Operating within a voltage range of 6

to 8.4 V, it has a stall current of 2.4 to 3 A and a no-load current of about 100 mA.

A UART serial communication interface enables half-duplex asynchronous transmis-

sion, allowing for daisy-chaining multiple servos, each with a unique ID from 0 to

253 (default ID = 1). The motor ensures an angular positioning accuracy of 0.3° and

provides real-time feedback on temperature, input voltage, and operational status,

supported by an integrated LED for diagnostics.

Complementing the servo is the Hiwonder TTL/USB Debugging Board, which

converts USB signals to TTL-level serial communication, facilitating control and pa-

rameter adjustments of connected servos. It operates with a half-duplex UART in-

terface at a specified baud rate, enabling multiple servos to be controlled individually

through unique IDs. To control the LX-16A servos using Python, the PyLX-16A

library is utilized, designed for compatibility with the Arduino framework.

19

Figure 2.1: Hiwonder LX-16A Servo Motor

Finally for mounting, four brackets are provided: a side bracket, bottom bracket,

inclined U-shaped bracket, and straight U-shaped bracket. The side and bottom

brackets attach directly to the servo actuator, while the U-shaped brackets are mounted

on top, connecting to the motor’s rotary sections, offering versatile configuration op-

tions.

Each intermediate link is made up of identical components. We constructed these

links using a three-part system: a bottom bracket, a servo actuator, and a straight U-

shaped bracket. The head is slightly different, utilizing an inclined U-shaped bracket

instead of a straight one. The tail is distinct from the intermediate links; it does not

have a bottom bracket to reduce friction, which allows the tail to initiate the worm’s

motion more effectively. For the prototype of the worm robot, we used five links: the

tail, three intermediate links, and the head link, as illustrated in Figure 2.2.

The design was replicated in the Nvidia Isaac Sim environment, which is used

for digital twin development, as shown in the Figure 2.3. In this study, a six-link

robot was designed using SolidWorks and then exported in URDF format to facili-

20

+ + · · · + +

Figure 2.2: N-link Worm Robot

Figure 2.3: 5 DOF Worm Robot Design in Nvidia Isaac Sim

tate the development of a digital twin with Nvidia Isaac Sim. The URDF Importer

tool (NVIDIA Corporation, 2024) was utilized to integrate the robot model into the

simulation environment. Each joint of the robot was configured as a revolute joint,

with adjustable stiffness and damping parameters. These parameters were specifi-

cally tailored to replicate the dynamic behavior of Hiwonder RC servos, which are

also utilized in the robot’s physical implementation. This approach ensured that the

simulation accurately reflected the performance of the actual hardware, providing a

reliable platform for design validation and optimization.

Nvidia Isaac Sim significantly enhances mechanical design and development by

allowing for thorough refinement of a robot’s structure before physical fabrication.

Its simulation environment supports iterative testing of joint configurations, optimiz-

ing link lengths and weight distribution without the cost of physical prototypes. The

URDF-based import process ensures that kinematic and dynamic properties from

CAD software are maintained, facilitating accurate validation of joint performance

and potential interferences. Furthermore, collision detection and physics-based con-

21

straints enable engineers to analyze contact forces and maintain structural integrity

during motion. By leveraging these features, the digital twin approach in Isaac Sim

effectively minimizes design flaws, reduces fabrication iterations, and ensures that the

final physical prototype performs as expected.

22

Chapter 3

KINEMATICS

The kinematics of a robotic system refers to the motion of its links without con-

sidering the forces or torques involved. In this chapter, we will explore the forward

and inverse kinematics of a caterpillar-inspired robot with 5 degrees of freedom (5-

DOF) (Medrano-Hermosillo et al., 2022). The robot is modeled as a serial chain

manipulator that moves using sequential gaits. We begin by introducing a method

for forward kinematics using rotor algebra, a branch of geometric algebra. Then we

present derivations using motor algebra and screw theory and finally we derive a so-

lution for inverse kinematics through a gait-based trigonometric analysis for a planar

configuration (Ghanbari and Noorani, 2011; Ghanbari et al., 2008).

Forward Kinematics using Rotor Algebra G+
3,0,0

Rotors, as elements of Clifford (geometric) algebra are even grade subset of Eu-

clidean algebra of 3D space and hence we denote it by G+
3,0,0. They provide a succinct,

coordinate-free representation of rotations. By encoding rotations through bivector

exponentials, rotors enable numerically stable propagation of motion along a kine-

matic chain. This method is especially useful when the joints are purely rotational

(Bayro-Corrochano, 2020).

In 3D Geometric Algebra for the Euclidean 3D Space G+
3,0,0, we have 23 = 8

elements namely, 1 (scalar or grade 0 element), e1, e2, e3 (vectors or grade 1 elements),

e12, e23, e31 (bivectors or grade 2 elements) and lastly e123 (psuedoscalar or grade

3 element). The even grade subset consists of only scalars and bivectors (Bayro-

23

Corrochano, 2020). We also observe that rotations are just two reflections and rotors

are isomorphic to quaternions.

In the home configuration, all joint angles θi are zero. The joint positions along

the e1 axis are given by,

P1(0) = 0

P2(0) = l1e1

P3(0) = (l1 + l2)e1

P4(0) = (l1 + l2 + l3)e1

P5(0) = (l1 + l2 + l3 + l4)e1

X(0) = (l1 + l2 + l3 + l4 + l5)e1

(3.1)

Rotor Definition

A rotor that rotates a vector by an angle θi in the e12 plane is defined as,

Ri = e−
θi
2
e12 = cos

(
θi
2

)
− e12 sin

(
θi
2

)
(3.2)

with its reverse given by:

R̃i = cos

(
θi
2

)
+ e12 sin

(
θi
2

)
(3.3)

A vector v rotated by Ri becomes:

v′ = Ri v R̃i. (3.4)

For each link, we compute the translational displacement using

Pi = Pi(0)−Ri Pi(0) R̃i (3.5)

24

The complete forward kinematics for the end-effector is then obtained by composing

the rotations and the translations:

X = R1R2R3R4R5X(0) R̃5R̃4R̃3R̃2R̃1

+ P1 +R1P2 R̃1 +R1R2P3 R̃2R̃1

+ R1R2R3P4 R̃3R̃2R̃1 +R1R2R3R4P5 R̃4R̃3R̃2R̃1

(3.6)

This expression encapsulates the entire transformation from the base frame to the

end-effector by sequentially applying the appropriate rotors and translation vectors.

Forward Kinematics Using Motor Algebra

Motor algebra extends rotor algebra by unifying rotation and translation into a

single entity. A motor M can be written as:

M = R
(
1 + 1

2
e4 T

)
(3.7)

where:

• R is the rotor part representing rotation,

• T is a translation vector,

• e4 is the unit bivector that commutes with scalars and squares to zero.

Motor Derivation for a Single Link

For a given joint, assume the rotation is Ri = e−
θi
2
e12 and the translation (in the

link’s local frame) is Ti = lie1. The corresponding motor is then:

Mi = e−
θi
2
e12
(
1 +

1

2
e4 lie1

)
(3.8)

The reverse motor is given by:

M̃i =
(
1− 1

2
e4 lie1

)
e

θi
2
e12 (3.9)

25

Sequential Composition

The end-effector pose is obtained by composing the motors for each joint:

X = M1M2M3M4M5X(0) M̃5M̃4M̃3M̃2M̃1 (3.10)

This product captures both the rotation and the translation at each stage. Note that

when the translation parts are small compared to the link lengths, the exponential

form naturally approximates the product of separate rotations and translations. This

derivation is consistent with the rotor-only formulation, where translations were han-

dled separately. In the motor algebra formulation, both effects are integrated, showing

that both approaches yield the same overall transformation when interpreted prop-

erly.

Forward Kinematics Using Screw Theory

In this context of a planar serial robot with revolute joints, each joint rotates about

an axis perpendicular to the plane of motion (the z–axis), and each link is constrained

to move in the xy–plane. Screw theory provides a unifying way to represent rigid–

body motions as a combination of rotation about and translation along a common

axis. The Product of Exponentials (PoE) formula is particularly elegant for analyzing

the forward kinematics of such robotic mechanisms.

According to Medrano-Hermosillo et al. (2022), for an n–joint serial manipulator,

the forward kinematics can be written as the product of exponentials acting on the

end–effector’s home position X(0):

X(θ1, . . . , θn) = eξ1θ1 eξ2θ2 · · · eξnθn X(0)

= R1R2 · · ·Rn X(0) +
[
P1 +R1P2 +R1R2P3 + · · ·+R1R2 · · ·Rn−1Pn

]
(3.11)

26

where each Ri is a rotation about the z–axis by θi and each Pi is the translation given

by

Pi =
(
I −Ri

)
Pi(0) (3.12)

Consider a 5–link planar manipulator with five revolute joints, each rotating about the

z–axis. Let the link lengths be l1, l2, l3, l4, l5. In the home (zero–angle) configuration

the links are aligned along the x–axis. Thus, the end–effector’s home position is

X(0) =



l1 + l2 + l3 + l4 + l5

0

0


(3.13)

Each joint i has the rotation matrix

Ri =



cos θi − sin θi 0

sin θi cos θi 0

0 0 1


(3.14)

For the base joint, P1(0) = 0, hence

P1 =
(
I3×3 −R1

)
P1(0) = 0 (3.15)

where I3×r stands for 3x3 identity matrix.

Similarly we find the home positions for joints 2 to 5. Thus, the complete forward

kinematics expression for the 5–link robot is

X(θ1, θ2, θ3, θ4, θ5) = R1R2R3R4R5X(0)

+
[
P1 +R1P2 +R1R2P3 +R1R2R3P4 +R1R2R3R4P5

] (3.16)

27

Since the product R1R2R3R4R5 is a rotation by Θ = θ1 + θ2 + θ3 + θ4 + θ5, we have

R1R2R3R4R5X(0) =



(l1 + l2 + l3 + l4 + l5) cosΘ

(l1 + l2 + l3 + l4 + l5) sinΘ

0


. (3.17)

For many planar serial arms with links attached end–to–end (without additional

offsets), the forward kinematics can be simplified to the familiar chain form. In the

case of a 5–link planar manipulator, the position of the end–effector is given by

X(θ1, θ2, θ3, θ4, θ5) =



x(θ1, θ2, θ3, θ4, θ5)

y(θ1, θ2, θ3, θ4, θ5)

0


,

where x(θ1, . . . , θ5) = l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

+ l4 cos(θ1 + θ2 + θ3 + θ4) + l5 cos(θ1 + θ2 + θ3 + θ4 + θ5),

y(θ1, . . . , θ5) = l1 sin θ1 + l2 sin(θ1 + θ2) + l3 sin(θ1 + θ2 + θ3)

+ l4 sin(θ1 + θ2 + θ3 + θ4) + l5 sin(θ1 + θ2 + θ3 + θ4 + θ5).

(3.18)

Inverse Kinematics Using a Trigonometric Approach for Mechatronal Gaits

In certain cases, such as planar robots with negligible link mass and caterpillar-like

locomotion, an inverse kinematics solution can be derived using trigonometry. This

section focuses on a gait-based approach as shown below in Figure 3.1.

28

Figure 3.1: Traversal Cycle of the Caterpillar Robot

Gait 1 Derivation

Assume a planar robot with uniform link length l and six links. For Gait 1 as

shown in Figure 6.2, the joint angles are set as:

θ1 = 0, θ2 = +θ, θ3 = −θ, θ4 = −θ, θ5 = +θ.

29

Figure 3.2: Gait 1

Define the cumulative angles:

ϕ1 = θ1 = 0,

ϕ2 = θ1 + θ2 = θ,

ϕ3 = θ1 + θ2 + θ3 = 0,

ϕ4 = θ1 + θ2 + θ3 + θ4 = −θ,

ϕ5 = θ1 + θ2 + θ3 + θ4 + θ5 = 0.

Starting with the head at (x0, y0) = (0, 0), the coordinates of subsequent joints

are computed as:

(xi, yi) =
(
xi−1 + l cos(ϕi−1), yi−1 + l sin(ϕi−1)

)
.

30

Figure 3.3: Gait 2

For example:

(x1, y1) = (l, 0),

(x2, y2) = (2l, 0),

(x3, y3) =
(
2l + l cos θ, l sin θ

)
,

(x4, y4) =
(
3l + l cos θ, l sin θ

)
,

(x5, y5) =
(
3l + 2l cos θ, 0

)
,

(x6, y6) =
(
4l + 2l cos θ, 0

)
.

The initial total length is Linitial = 6l. After Gait 1, the effective length along the

x-axis becomes:

Lgait = 4l + 2l cos θ.

Thus, the net displacement (tail pull) is:

η = Linitial − Lgait = 6l − (4l + 2l cos θ) = 2l (1− cos θ).

31

Gait 2 Derivation

For Gait 2 as shown in Figure 3.3, the joint angles are configured as:

θ1 = +θ, θ2 = −θ, θ3 = −θ, θ4 = +θ, θ5 = 0,

yielding cumulative angles:

ϕ1 = θ,

ϕ2 = θ + (−θ) = 0,

ϕ3 = θ + (−θ) + (−θ) = −θ,

ϕ4 = θ + (−θ) + (−θ) + (+θ) = 0,

ϕ5 = θ + (−θ) + (−θ) + (+θ) + 0 = 0.

Again, using the forward coordinate relations,

(xi, yi) =
(
xi−1 + l cos(ϕi−1), yi−1 + l sin(ϕi−1)

)
,

we calculate the new positions. Once the gait is complete, the joints relax back

to their home positions by uniformly shifting each joint coordinate by η in the −x

direction:

x′
i = xi − η for i = 1, . . . , 6.

Thus, a cyclic gait motion results in a net translation of η per cycle.

32

Chapter 4

DYNAMICS

The dynamics of a worm robot are characterized by non-linear interactions, segmental

motions, inertial properties, coriolis forces, gravitational effects, and external reaction

forces from the environment. Its movement mimics the gait of an inchworm, where

coordinated contractions and extensions create a continuous wave that travels from

the tail to the head, resulting in forward motion through small, incremental steps.

In contrast, the caterpillar robot, with its longer joint modules, demonstrates a more

distributed application of force. The inchworm model operates within an open-chain

kinematic framework, achieving movement through periodic anchoring and stretch-

ing. Meanwhile, the caterpillar robot transitions between open-chain and closed-chain

states, facilitating more continuous motion. A crawling robot inspired by the inch-

worm’s locomotion employs Euler-Lagrange dynamics to model this crawling motion

(Rahmani and Redkar, 2024b; Ghanbari and Noorani, 2011; Ab Rashid et al., 2020;

Rahmani and Redkar, 2024a).

Non-Linear Dynamics using Euler-Lagrange Equation

We developed a dynamic model of a planner manipulator with revolute joints,

incorporating a closed-loop chain and reaction forces. The non linear gait dynamics

as per Ghanbari and Noorani (2011) (as shown in Figure 4.1) is calculated as,

M(θ)θ̈ + C(θ)θ̇2 +G(θ) = Dτ + λ(θ)FR (4.1)

where for a 4 DOF robot, M(θ) ∈ R4×4, C(θ) ∈ R4×4, G(θ) ∈ R4×1, D ∈

R4×4, FR stands for mass matrix, coriolis matrix, gravity matrix, subtraction matrix

33

Figure 4.1: 4 DOF Manipulator Model (Ghanbari and Noorani, 2011)

and reaction forces with respect to surface. But for a 5 DOF the dimensions change as

M(θ) ∈ R5×5, C(θ) ∈ R5×5, G(θ) ∈ R5×1, D ∈ R5×5. Let us begin by calculating

the square of velocity of the ith link centroid,

v2p =
l2p
4
φ̇2
p +

p∑
i=1

p−1∑
j=1

liljφ̇iφ̇jcos(φ̇i − φ̇j) (4.2)

The height of the centroid for each link is given by,

hp =

p∑
j=1

ljsin(φj)−
lp
2
sin(φp) (4.3)

Next, we calculate the total kinetic energy and potential energy,

T =
1

2

5∑
p=1

[
mpv

2
p + Ipφ̇2

p

]
(4.4)

V =
5∑

p=1

mpghp (4.5)

Assuming the links are identical, the masses stay the same and I equals ml2

12
. Equation

4.4 can be expanded as,

T =
m

2

[
v21 + v22 + v23 + v24 + v25

]
+

ml2

24

[
φ̇2
1 + φ̇2

2 + φ̇2
3 + φ̇2

4 + φ̇2
5

]
(4.6)

34

Similarly, equation 4.5 can also be expanded as,

V = g l

[
9m

2
sin(φ1) +

7m

2
sin(φ2) +

5m

2
sin(φ3) +

3m

2
sin(φ4) +

m

2
sin(φ5)

]
V =

mg l

2

[
9 sin(φ1) + 7 sin(φ2) + 5 sin(φ3) + 3 sin(φ4) + sin(φ5)

]
(4.7)

Considering the non-conservative forces acting on the system represented by Qk, the

virtual work done by all such forces are given by,

δW = τ · δΘ+
(
Fj î+ FRĵ

)
· δPp+1 =

5∑
p=1

Qpδφp (4.8)

where Qp = τp − τp−1 + λpFR and λp = lp(cosϕp + µ̄sinϕp) Using Euler Lagrange

equations, motion equations of dynamic systems are written as,

d

dt

[
∂T

∂φ̇k

]
− ∂T

∂φk

+
∂V

∂φk

= Qk (4.9)

Substituting 4.4, 4.5, 4.8 and transforming it in the form 4.1, we get,

M(θ) =
ml2

6



26 21C12 15C13 12C14 6C15

21C12 20 18C23 12C24 6C25

15C13 18C23 14 12C34 6C35

12C14 12C24 12C34 8 6C45

6C15 6C25 6C35 6C45 2


(4.10)

C(θ) =
ml2

6



0 21S12 15S13 12S14 6S15

− 21S12 0 18S23 12S24 6S25

− 15S13 − 18S23 0 12S34 6S35

− 12S14 − 12S24 − 12S34 0 6S45

− 6S15 − 6S25 − 6S35 − 6S45 0


(4.11)

35

G(θ) =
mg l

2



9 cos(φ1)

7 cos(φ2)

5 cos(φ3)

3 cos(φ4)

cos(φ5)


(4.12)

D =



1 −1 0 0 0

0 1 −1 0 0

0 0 1 −1 0

0 0 0 1 −1

0 0 0 0 1


(4.13)

Dynamics using Motor Algebra

In motor algebra, line axes are represented as Plücker lines, which simultaneously

encode both the direction and the moment of the line in 3D space in bivector format.

A line in 3D space is defined by:

• A direction vector n, indicating the orientation of the line.

• A moment vector m = p × n, capturing the offset of the line relative to the

origin, where p is any point on the line.

In motor algebra, these components are combined into a single object known as the

screw axis :

L = n+ Im (4.14)

where:

• n is the bivector representing the line’s direction.

36

• m is the bivector representing the line’s moment.

• I is the pseudoscalar.

Consider a serial chain of revolute joints, each rotating about the y-axis. The base

joint (Joint 1) is located at the origin with:

n = −e13, m = 0 (4.15)

Thus, the screw axis of the first joint is:

L1 = −e13 (4.16)

For subsequent joints, which are offset along the x-axis by distances l1, l2, . . . , l5, the

position of the i-th joint is:

pi =



i−1∑
j=1

lj

0

0

 (4.17)

The corresponding moment is:

mi = pi × n =

(
i−1∑
j=1

lj

)
e12 (4.18)

The screw axis of the i-th joint becomes:

Li = −e13 + I

(
i−1∑
j=1

lj

)
e12 (4.19)

After translating the joint by l1 in the +x direction, the new screw axis is:

L2 = −e13 + I (l1 e12) (4.20)

This result shows that the direction of the joint (along the y-axis) remains the same,

while the moment now reflects an offset of l1 in the x-direction.

Specifically, we have:

37

• Joint 1: At the origin,

L1 = −e13. (4.21)

• Joint 2: Translated by l1 along +x,

L2 = −e13 + I
(
l1 e12

)
. (4.22)

• Joint 3: Translated by l1 + l2 along +x,

L3 = −e13 + I
(
(l1 + l2) e12

)
. (4.23)

• Joint 4: Translated by l1 + l2 + l3 along +x,

L4 = −e13 + I
(
(l1 + l2 + l3) e12

)
. (4.24)

• Joint 5: Translated by l1 + l2 + l3 + l4 along +x,

L5 = −e13 + I
(
(l1 + l2 + l3 + l4) e12

)
. (4.25)

• Joint 6: Translated by l1 + l2 + l3 + l4 + l5 along +x,

L6 = −e13 + I
(
(l1 + l2 + l3 + l4 + l5) e12

)
. (4.26)

The velocity screw (twist) sj of the j-th link is computed recursively as:

sj =

j∑
k=1

Lkθ̇k (4.27)

where θ̇k is the joint velocity of the k-th joint. The acceleration ṡj of the j-th link is

given by:

ṡj =

j∑
k=1

θ̈kLk +

j∑
k=1

θ̇kL̇k (4.28)

where the time derivative of each screw axis Lk involves Lie brackets:

L̇k = [sk−1, Lk] (4.29)

38

Equations of motion for each link can be given as,

w5 +R5 +G5 = N5(ṡ5) + {s5, N5(s5)}

w4 +R4 +G4 − w5 −R5 = N4(ṡ4) + {s4, N4(s4)}

w3 +R3 +G3 − w4 −R4 = N3(ṡ3) + {s3, N3(s3)}

w2 +R2 +G2 − w3 −R3 = N2(ṡ2) + {s2, N2(s2)}

w1 +R1 +G1 − w2 −R2 = N1(ṡ1) + {s1, N1(s1)}

After reordering these equations,

w5 +R5 = N5(ṡ5) + {s5, N5(s5)} −G5

w4 +R4 = N4(ṡ4) + {s4, N4(s4)}+N5(ṡ5) + {s5, N5(s5)}

−G5 −G4

w3 +R3 = N3(ṡ3) + {s3, N3(s3)}+N4(ṡ4) + {s4, N4(s4)}

+N5(ṡ5) + {s5, N5(s5)} −G5 −G4 −G3

w2 +R2 = N2(ṡ2) + {s2, N2(s2)}+N3(ṡ3) + {s3, N3(s3)}

+N4(ṡ4) + {s4, N4(s4)}+N5(ṡ5) + {s5, N5(s5)}

−G5 −G4 −G3 −G2

w1 +R1 = N1(ṡ1) + {s1, N1(s1)}+N2(ṡ2) + {s2, N2(s2)}

+N3(ṡ3) + {s3, N3(s3)}+N4(ṡ4) + {s4, N4(s4)}

+N5(ṡ5) + {s5, N5(s5)} −G5 −G4 −G3 −G2

−G1

(4.30)

We will pair each equation with Li (or [L1 L2 L3 L4 L5]) to eliminate the reaction

39

forces,

τ5 = N5(ṡ5) · L5 + {s5, N5(s5)} · L5 −G5 · L5

τ4 = N4(ṡ4) · L4 + {s4, N4(s4)} · L4 +N5(ṡ5) · L4

+ {s5, N5(s5)} · L4 − (G4 +G5) · L4

τ3 = N3(ṡ3) · L3 + {s3, N3(s3)} · L3 +N4(ṡ4) · L3

+ {s4, N4(s4)} · L3 +N5(ṡ5) · L3 + {s5, N5(s5)} · L3

− (G3 +G4 +G5) · L3

τ2 = N2(ṡ2) · L2 + {s2, N2(s2)} · L2 +N3(ṡ3) · L2

+ {s3, N3(s3)} · L2 +N4(ṡ4) · L2

+ {s4, N4(s4)} · L2 +N5(ṡ5) · L2 + {s5, N5(s5)} · L2

− (G2 +G3 +G4 +G5) · L2

τ1 = N1(ṡ1) · L1 + {s1, N1(s1)} · L1 +N2(ṡ2) · L1

+ {s2, N2(s2)} · L1 +N3(ṡ3) · L1 + {s3, N3(s3)} · L1

+N4(ṡ4) · L1 + {s4, N4(s4)} · L1 +N5(ṡ5) · L1

+ {s5, N5(s5)} · L1 − (G1 +G2 +G3 +G4 +G5) · L1

(4.31)

The velocity screw or twist for link j is given using Jacobian J with columns as joint

40

line screws Li,

sj = Jθ̇ = [L1 L2 L3 L4 L5][θ̇1 θ̇2 θ̇3 θ̇4 θ̇5]T

The link velocities are,

s1 = L1θ̇1

s2 = L1θ̇1 + L2θ̇2

s3 = L1θ̇1 + L2θ̇2 + L3θ̇3

s4 = L1θ̇1 + L2θ̇2 + L3θ̇3 + L4θ̇4

s5 = L1θ̇1 + L2θ̇2 + L3θ̇3 + L4θ̇4 + L5θ̇5

sj =
n∑

k=1

Lj θ̇j

Subsequently the link accelerations are given by,

ṡ1 = θ̈1L1 + θ̇1L̇1

ṡ2 = θ̈2L2 + θ̇2L̇2 + θ̈1L1 + θ̇1L̇1

ṡ3 = θ̈3L3 + θ̇3L̇3 + θ̈2L2 + θ̇2L̇2 + θ̈1L1 + θ̇1L̇1

ṡ4 = θ̈4L4 + θ̇4L̇4 + θ̈3L3 + θ̇3L̇3 + θ̈2L2 + θ̇2L̇2 + θ̈1L1

+ θ̇1L̇1

ṡ5 = θ̈5L5 + θ̇5L̇5 + θ̈4L4 + θ̇4L̇4 + θ̈3L3 + θ̇3L̇3 + θ̈2L2

+ θ̇2L̇2 + θ̈1L1 + θ̇1L̇1

(4.32)

41

We know that,

L2(t) = M1(t)L2(0)M̃1(t)

L3(t) = M2(t)L3(0)M̃2(t)

L4(t) = M3(t)L4(0)M̃3(t)

L5(t) = M4(t)L5(0)M̃4(t)

(4.33)

We know that derivative of screw line is, d
dt
Mi[nj mj]

T = [si Lj]

Let us replace the derivatives of screw axes (L̇i) with Lie brackets,

[s1, L1] ≡ ad(s1)L1 (4.34)

L̇1 =
d

dt
L1(t) = [s1, L1] = θ̇1[L1, L1] = 0

L̇2 =
d

dt
L2(t) = [s1, L2] = θ̇1[L1, L2]

L̇3 =
d

dt
L3(t) = [s2, L3] = [L1θ̇1 + L2θ̇2, L3]

L̇4 =
d

dt
L4(t) = [s3, L4] = [L1θ̇1 + L2θ̇2 + L3θ̇3, L4]

L̇5 =
d

dt
L5(t) = [s4, L5] = [L1θ̇1 + L2θ̇2 + L3θ̇3 + L4θ̇4, L5]

(4.35)

42

Further simplifying the link accelerations,

ṡ1 = θ̈1L1

ṡ2 = θ̈1L1 + θ̈2L2 + θ̇1θ̇2[L1, L2]

ṡ3 = θ̈1L1 + θ̈2L2 + θ̈3L3 + θ̇3[L1θ̇1 + L2θ̇2, L3]

+ θ̇2θ̇1[L1, L2]

ṡ4 = θ̈1L1 + θ̈2L2 + θ̈3L3 + θ̈4L4

+ θ̇4[L1θ̇1 + L2θ̇2 + L3θ̇3, L4] + θ̇3[L1θ̇1 + L2θ̇2, L3]

+ θ̇2θ̇1[L1, L2]

ṡ5 = θ̈1L1 + θ̈2L2 + θ̈3L3 + θ̈4L4 + θ̈5L5

+ θ̇5[L1θ̇1 + L2θ̇2 + L3θ̇3 + L4θ̇4, L5]

+ θ̇4[L1θ̇1 + L2θ̇2 + L3θ̇3, L4] + θ̇3[L1θ̇1 + L2θ̇2, L3]

+ θ̇2θ̇1[L1, L2]

(4.36)

Using Linearity and Leibniz Rule of Lie Brackets, we can expand each Lie bracket

more for Coriolis terms,

For example,

θ̇3[L1θ̇1 + L2θ̇2, L3] = θ̇3θ̇1[L1, L3] + θ̇3θ̇2[L2, L3] (4.37)

τi =
5∑

j=i

[Nj(ṡj) · Li + {sj, Nj(sj)} · Li −Gj · Li]

τi =
5∑

j=i

[Nj(ṡj −Gj) · Li + {sj, Nj(sj)} · Li]

(4.38)

as Gj = Nj(G)

43

Replacing sj with Si, as a 6× 1 vector S = [ω, v]T ,

τ5 = Ṡ5
T
N5L5 + S5

TN5[L5, S5]−G5 · L5

τ4 = Ṡ4
T
N4L4 + S4

TN4[L4, S4]−G4 · L4

+ Ṡ5
T
N5L4 + S5

TN5[L4, S5]−G5 · L4

τ3 = Ṡ3
T
N3L3 + S3

TN3[L3, S3]−G3 · L3 + Ṡ4
T
N4L3

+ S4
TN4[L3, S3]−G4 · L3 + Ṡ5

T
N5L3 + S5

TN5[L3, S5]

−G5 · L3

τ2 = Ṡ2
T
N2L2 + S2

TN2[L2, S2]−G2 · L2 + Ṡ3
T
N3L2

+ S3
TN3[L2, S3]−G3 · L2 + Ṡ4

T
N4L2 + S4

TN4[L2, S4]

−G4 · L2 + Ṡ5
T
N5L2 + S5

TN5[L2, S5]−G5 · L2

τ1 = Ṡ1
T
N1L1 + S1

TN1[L1, S1]−G1 · L1 + Ṡ2
T
N2L1

+ S2
TN2[L1, S2]−G2 · L1 + Ṡ3

T
N3L1 + S3

TN3[L1, S3]

−G3 · L1 + Ṡ4
T
N4L1 + S4

TN4[L1, S4]−G4 · L1

+ Ṡ5
T
N5L1 + S5

TN5[L1, S5]−G5 · L1

(4.39)

Let us analyze τ5 part by part,

τ5 = Ṡ5
T
N5L5︸ ︷︷ ︸
(i)

+S5
TN5[L5, S5]︸ ︷︷ ︸

(ii)

−G5 · L5

Taking (i) we know,

S5 = L1θ̇1 + L2θ̇2 + L3θ̇3 + L4θ̇4 + L5θ̇5

Ṡ5 = θ̇1L̇1 + θ̈1L1 + θ̇2L̇2 + θ̈2L2 + θ̇3L̇3

+ θ̈3L3 + θ̇4L̇4 + θ̈4L4 + θ̇5L̇5 + θ̈5L5

(4.40)

44

We also know that L̇k = [Sk−1, Lk],

L̇1 = [S1, L1]

L̇2 = [S1, L2]

L̇3 = [S2, L3]

L̇4 = [S3, L4]

L̇5 = [S4, L5]

(4.41)

Ṡ5 = θ̈1L1 + θ̈2L2 + θ̈3L3 + θ̈4L4 + θ̈5L5

+ θ̇2(θ̇1[L1, L2]) + θ̇3(θ̇1[L1, L3] + θ̇2[L2, L3])

+ θ̇4(θ̇1[L1, L4] + θ̇2[L2, L4] + θ̇3[L3, L4])

+ θ̇5(θ̇1[L1, L5] + θ̇2[L2, L5] + θ̇3[L3, L5]

+ θ̇4[L4, L5])

(4.42)

Therefore,

Ṡ5
T
N5L5 =

[
5∑

k=1

θ̈kLk +
5∑

p=1

5∑
q=1

θ̇pθ̇q[Lp, Lq]

]T
N5L5

=
5∑

k=1

θ̈kLk
TN5L5︸ ︷︷ ︸

contributes to M(θ)

+
5∑

p=1

5∑
q=1

θ̇pθ̇q[Lp, Lq]
TN5L5︸ ︷︷ ︸

contributes to C(θ,θ̇)

(4.43)

Next,

S5 =
5∑

m=1

Lm
˙θm

[L5, S5] =
5∑

m=1

˙θm[L5, Lm]

ST
5 N5[L5, S5] =

[
5∑

q=1

Lqθ̇q

]T
N5

[
5∑

m=1

˙θm[L5, Lm]

]

ST
5 N5[L5, S5] =

5∑
q=1

5∑
m=1

θ̇q ˙θmL
T
q N5[L5, Lm]

(4.44)

45

Similarly, we substitute and find all the torques,

τ5 =
5∑

k=1

Lk
TN5L5θ̈k +

5∑
p=1

5∑
q=1

[Lp, Lq]
TN5L5θ̇pθ̇q +

5∑
p=1

5∑
q=1

LT
pN5[L5, Lq]θ̇pθ̇q −GT

5L5

τ4 =
4∑

k=1

Lk
TN4L4θ̈k +

4∑
p=1

4∑
q=1

[Lp, Lq]
TN4L4θ̇pθ̇q +

4∑
p=1

4∑
q=1

LT
pN4[L4, Lq]θ̇pθ̇q

+
5∑

k=1

Lk
TN5L4θ̈k +

5∑
p=1

5∑
q=1

[Lp, Lq]
TN5L4θ̇pθ̇q +

5∑
p=1

5∑
q=1

LT
pN5[L4, Lq]θ̇pθ̇q −

[
5∑

i=4

GT
i

]
L4

τ3 =
3∑

k=1

Lk
TN3L3θ̈k +

3∑
p=1

3∑
q=1

[Lp, Lq]
TN3L3θ̇pθ̇q +

3∑
p=1

3∑
q=1

LT
pN3[L3, Lq]θ̇pθ̇q

+
4∑

k=1

Lk
TN4L3θ̈k +

4∑
p=1

4∑
q=1

[Lp, Lq]
TN4L3θ̇pθ̇q +

4∑
p=1

4∑
q=1

LT
pN4[L3, Lq]θ̇pθ̇q

+
5∑

k=1

Lk
TN5L3θ̈k +

5∑
p=1

5∑
q=1

[Lp, Lq]
TN5L3θ̇pθ̇q +

5∑
p=1

5∑
q=1

LT
pN5[L3, Lq]θ̇pθ̇q −

[
5∑

i=3

GT
i

]
L3

τ2 =
2∑

k=1

Lk
TN2L2θ̈k +

2∑
p=1

2∑
q=1

[Lp, Lq]
TN2L2θ̇pθ̇q +

2∑
p=1

2∑
q=1

LT
pN2[L2, Lq]θ̇pθ̇q

+
3∑

k=1

Lk
TN3L2θ̈k +

3∑
p=1

3∑
q=1

[Lp, Lq]
TN3L2θ̇pθ̇q +

3∑
p=1

3∑
q=1

LT
pN3[L2, Lq]θ̇pθ̇q

+
4∑

k=1

Lk
TN4L2θ̈k +

4∑
p=1

4∑
q=1

[Lp, Lq]
TN4L2θ̇pθ̇q +

4∑
p=1

4∑
q=1

LT
pN4[L2, Lq]θ̇pθ̇q

+
5∑

k=1

Lk
TN5L2θ̈k +

5∑
p=1

5∑
q=1

[Lp, Lq]
TN5L2θ̇pθ̇q +

5∑
p=1

5∑
q=1

LT
pN5[L2, Lq]θ̇pθ̇q −

[
5∑

i=2

GT
i

]
L2

τ1 =
1∑

k=1

Lk
TN1L1θ̈k +

1∑
p=1

1∑
q=1

[Lp, Lq]
TN1L1θ̇pθ̇q +

1∑
p=1

1∑
q=1

LT
pN1[L1, Lq]θ̇pθ̇q

+
2∑

k=1

Lk
TN2L1θ̈k +

2∑
p=1

2∑
q=1

[Lp, Lq]
TN2L1θ̇pθ̇q +

2∑
p=1

2∑
q=1

LT
pN2[L1, Lq]θ̇pθ̇q

+
3∑

k=1

Lk
TN3L1θ̈k +

3∑
p=1

3∑
q=1

[Lp, Lq]
TN3L1θ̇pθ̇q +

3∑
p=1

3∑
q=1

LT
pN3[L1, Lq]θ̇pθ̇q

+
4∑

k=1

Lk
TN4L1θ̈k +

4∑
p=1

4∑
q=1

[Lp, Lq]
TN4L1θ̇pθ̇q +

4∑
p=1

4∑
q=1

LT
pN4[L1, Lq]θ̇pθ̇q

+
5∑

k=1

Lk
TN5L1θ̈k +

5∑
p=1

5∑
q=1

[Lp, Lq]
TN5L1θ̇pθ̇q +

5∑
p=1

5∑
q=1

LT
pN5[L1, Lq]θ̇pθ̇q −

[
5∑

i=1

GT
i

]
L1

(4.45)
46

The final closed loop system for PD control is illustrated by,ẋ1

ẋ2

 =

 x2

−M−1
(
Kp x1 +Kv x2 −B(θ̇1, θ̇2, θ̇3, θ̇4, θ̇5)

)
 . (4.46)

where,

M =



LT
1 (N1 +N2 +N3 +N4 +N5)L1 LT

2 (N2 +N3 +N4 +N5)L1 LT
3 (N3 +N4 +N5)L1 LT

4 (N4 +N5)L1 LT
5N5L1

LT
1 (N2 +N3 +N4 +N5)L2 LT

2 (N2 +N3 +N4 +N5)L2 LT
3 (N3 +N4 +N5)L2 LT

4 (N4 +N5)L2 LT
5N5L2

LT
1 (N3 +N4 +N5)L3 LT

2 (N3 +N4 +N5)L3 LT
3 (N3 +N4 +N5)L3 LT

4 (N4 +N5)L3 LT
5N5L3

LT
1 (N4 +N5)L4 LT

2 (N4 +N5)L4 LT
3 (N4 +N5)L4 LT

4 (N4 +N5)L4 LT
5N5L4

LT
1N5L5 LT

2N5L5 LT
3N5L5 LT

4N5L5 LT
5N5L5


(4.47)

Kp =



Kp1 0 0 0 0

0 Kp2 0 0 0

0 0 Kp3 0 0

0 0 0 Kp4 0

0 0 0 0 Kp5


, Kv =



Kv1 0 0 0 0

0 Kv2 0 0 0

0 0 Kv3 0 0

0 0 0 Kv4 0

0 0 0 0 Kv5


.

(4.48)

Next we use the polynomial trajectory generation for modeling the actuator trajec-

tory as a continuous cubic polynomial function. This allows for smooth differentiation

of angular velocities, simplifying the calculation of angular positions. By employing

cubic polynomial interpolation, we can derive both position and velocity profiles ana-

lytically and efficiently, ensuring precise control over actuator motion. For an actuator

transitioning from an initial position θi to a final position θf over the time interval

[0, tf], with boundary conditions θ̇(0) = θ̇(tf) = 0, the cubic polynomial trajectory

can be expressed as follows (Craig, 2009):

θ(t) = a0 + a1t+ a2t
2 + a3t

3 (4.49)

47

Chapter 5

CONTROL

A control system is integral to managing the functions of a robot, facilitating the

achievement of desired angles and motion trajectories. The controller interprets in-

put commands and, utilizing feedback from various sensors or servos mitigates any

discrepancies that may arise during practical applications. Numerous environmen-

tal factors can interfere with the robot’s intended motion. An effectively designed

robotic controller ensures precise tracking of specified joint angles, trajectories, or

end-effector positions by minimizing the deviation between commanded and actual

states, commonly referred to as tracking error. This objective is typically realized

through feedback loops, which employ sensor measurements—such as joint encoders,

inertial sensors, or visual systems—to calculate these deviations and generate cor-

rective signals for the actuators to implement. Frequently employed control method-

ologies in robotics encompass classical techniques like proportional-integral-derivative

(PID) control, as well as more advanced strategies including model predictive control

(MPC), sliding mode control (SMC), and adaptive or robust controllers specifically

designed to address uncertainties and external disturbances.

The foundation of robotic control lies in the mathematical representation of a

robot’s motion dynamics. A general form of the equation of motion for an n-DOF

robotic system is given by,

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = τ (5.1)

where M(θ) is mass matrix, C(θ, θ̇)θ̇ is coriolis and centrifugal matrix, G(θ) is grav-

itation force vector and τ is the input control torque. The following sections will

48

explore different control techniques in detail.

PD Control

The Proportional-Derivative (PD) controller is a classical and widely adopted

control strategy in robotic systems due to its simplicity and effectiveness in stabilizing

joint trajectories. The PD controller applies corrective torques based on the current

position and velocity errors of each joint, without considering accumulated errors over

time (as in integral action).

The PD control states that,

τ = Kp(θd − θ) +Kv(θ̇d − θ̇) (5.2)

Substituting this in 5.1 gives,

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Kp(θd − θ) +Kv(θ̇d − θ̇)

=⇒ θ̈ = M−1[Kp(θd − θ) +Kv(θ̇d − θ̇)− C(θ, θ̇)θ̇ −G(θ)]

(5.3)

Now similarly for each joint i, the PD control torque is defined as:

τi = Kpi θ̃i +Kvi
˙̃
θi, (5.4)

where

• θ̃i is the position error at joint i,

• ˙̃
θi is the velocity error at joint i,

• Kpi , Kvi are the proportional and velocity gains, respectively.

For the full system, the PD control torque vector is expressed as:

τ = Kpx1 +Kvx2, (5.5)

49

where

Kp = diag(Kp1, Kp2, Kp3, Kp4, Kp5),

Kv = diag(Kv1, Kv2, Kv3, Kv4, Kv5).

(5.6)

Substituting the PD control law into the robot dynamics derived via motor alge-

bra, the state-space representation becomes:ẋ1

ẋ2

 =

 x2

−M(θ)−1
(
Kpx1 +Kvx2 −B(θ, θ̇)

)
 (5.7)

where

• M(θ) is the inertia matrix derived from Clifford algebra,

• B(θ, θ̇) represents the combined Coriolis, centrifugal, and gravitational effects,

• x1 is the position error vector,

• x2 is the velocity error vector.

PID Control

Proportional–Integral–Derivative (PID) control is a classical feedback strategy

widely used in robotic systems due to its simplicity and effectiveness in minimizing

trajectory-tracking errors. The PID control states that,

τ = Kp(θd − θ) +Kv(θ̇d − θ̇) +Ki

∫ t

0

(θd − θ)dτ (5.8)

Substituting this in 5.1 gives,

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Kp(θd − θ) +Kv(θ̇d − θ̇) +Ki

∫ t

0

(θd − θ)dτ

=⇒ θ̈ = M−1[Kp(θd − θ) +Kv(θ̇d − θ̇) +Ki

∫ t

0

(θd − θ)dτ − C(θ, θ̇)θ̇ −G(θ)]

(5.9)

50

Figure 5.1: PD Implementation for Kp = 0.7 and Kd = 0.009

Similarly, integrating this control into the motor algebra-based dynamics of the

robot, the PID control input uPID is defined as:

uPID = Kpx1 +Kdx2 +Kix3 (5.10)

where

x1 =
(
θ̃1, θ̃2, θ̃3, θ̃4, θ̃5

)T
,

x2 =
(˙̃
θ1,

˙̃
θ2,

˙̃
θ3,

˙̃
θ4,

˙̃
θ5
)T

,

x3 =

∫ t

0

x1(τ) dτ.

(5.11)

51

The proportional, derivative, and integral gain matrices are given by

Kp = diag(Kp1, Kp2, Kp3, Kp4, Kp5), (5.12)

Kd = diag(Kd1, Kd2, Kd3, Kd4, Kd5), (5.13)

Ki = diag(Ki1, Ki2, Ki3, Ki4, Ki5). (5.14)

The closed-loop state-space dynamics of the system under PID control are

ẋ1 = x2,

ẋ2 = −M−1
(
Kpx1 +Kdx2 +Kix3 − B(θ, θ̇)

)
,

ẋ3 = x1,

(5.15)

where the inverse inertia matrix M−1 is defined as

M−1 =
[LT

1 (N1 +N2 +N3 +N4 +N5)L1 · · ·
...

. . .

]−1

(5.16)

Here, B(θ, θ̇) incorporates the Coriolis, centrifugal, and gravitational terms derived

using the recursive Lie bracket and line screw structures.

The total torque vector τ applied to the system is given by

τ = M(θ) θ̈ + C(θ, θ̇) θ̇ + G(θ), (5.17)

and the joint accelerations satisfy

θ̈ = −M−1
(
Kp x1 + Kd x2 + Ki x3 − B(θ, θ̇)

)
. (5.18)

This formulation embeds PID control directly into the motor algebra-based dy-

namics without altering the recursive structure of the inertial, Coriolis, or gravita-

tional components. The inclusion of the integral term x3 compensates for steady-state

errors, enhancing trajectory tracking performance and robustness against persistent

disturbances.

52

Figure 5.2: PID Implementation for Kp = 0.7, Ki = 1.0 and Kd = 0.009

Fractional PID Control

The Fractional Proportional-Integral-Derivative (FPID) controller extends the

classical PID approach by incorporating fractional-order integral and derivative ac-

tions (Shah and Agashe, 2016). These additional degrees of freedom enhance control

flexibility, robustness to disturbances, and performance in systems exhibiting long

memory or non-local dynamics.

The FPID control states that,

τ = Kp(θd − θ) +KvD
µ(θd − θ) +KiD

−λ(θd − θ) (5.19)

53

Substituting this in 5.1 gives,

M(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ) = Kp(θd − θ) +KvD
µ(θd − θ) +KiD

−λ(θd − θ)

=⇒ θ̈ = M−1[Kp(θd − θ) +KvD
µ(θd − θ) +KiD

−λ(θd − θ)− C(θ, θ̇)θ̇ −G(θ)]

(5.20)

Similarly for each joint i, the FPID control torque is defined as:

τi = Kpi θ̃i +KviD
µi θ̃i +KIiD

−λi θ̃i (5.21)

where

• θ̃i is the position error at joint i,

• Kpi , Kvi , KIi are the proportional, derivative and integral gains, respectively,

• D−λi is the fractional integral of order λi,

• Dµi is the fractional derivative of order µi.

For the complete system, the FPID control torque vector is expressed as:

τ = Kp x1 +Kd D
µ x1 +KI D

−λ x1, (5.22)

where

Kp = diag(Kp1, Kp2, Kp3, Kp4, Kp5),

Kd = diag(Kd1, Kd2, Kd3, Kd4, Kd5),

KI = diag(KI1, KI2, KI3, KI4, KI5),

D−λ = diag(D−λ1 , D−λ2 , D−λ3 , D−λ4 , D−λ5),

Dµ = diag(Dµ1 , Dµ2 , Dµ3 , Dµ4 , Dµ5).

(5.23)

54

By substituting the FPID control law into the robot dynamics derived via motor

algebra, the state-space representation becomes:ẋ1

ẋ2

 =

 x2

−M(θ)−1
(
Kp x1 +Kd D

µ x1 +KI D
−λ x1 −B(θ, θ̇)

)
 , (5.24)

where:

• M(θ) is the inertia matrix derived from Clifford algebra,

• B(θ, θ̇) represents the combined Coriolis, centrifugal, and gravitational effects,

• x1 is the position error vector,

• x2 is the velocity error vector.

Sliding Mode Control (SMC)

Sliding Mode Control (SMC) is applied to the motor algebra-based dynamics of

the 5-DOF robot to achieve robust trajectory tracking under model uncertainties

and external disturbances. Unlike the conventional PD control, SMC introduces a

discontinuous control action designed to force the system states onto a predefined

sliding surface and maintain them on this surface despite disturbances (Rahmani

et al., 2016).

The state variables are defined as

x1 = (θ̃1, θ̃2, θ̃3, θ̃4, θ̃5)
T

x2 = (
˙̃
θ1,

˙̃
θ2,

˙̃
θ3,

˙̃
θ4,

˙̃
θ5)

T

(5.25)

where x1 represents the position tracking error and x2 the velocity tracking error.

The sliding surface s is defined as

s = x2 + βx1 (5.26)

55

Figure 5.3: FPID Implementation for λ = 0.8, µ = 0.4, Kp = 0.7, Ki = 1.0 and Kd

= 0.009

where

β = diag(β1, β2, β3, β4, β5) (5.27)

is a positive diagonal matrix determining the convergence speed of the errors toward

the surface.

The control input τ replaces the PD control torque in the dynamics and is designed

as the sum of an equivalent control τeq and a switching control τs,

τ = τeq + τs (5.28)

56

where:

τeq = B(θ̇1, θ̇2, θ̇3, θ̇4, θ̇5) (5.29)

with B capturing the Coriolis, centrifugal, and gravitational effects derived from the

motor algebra dynamics, and

τs = Ks · sign(s) (5.30)

where

Ks = diag(Ks1, Ks2, Ks3, Ks4, Ks5) (5.31)

is a diagonal matrix of positive switching gains selected to upper-bound the system

uncertainties.

The closed-loop dynamics under SMC are expressed asẋ1

ẋ2

 =

 x2

−M−1
(
B(θ̇) +Ks · sign(x2 + βx1)

)
 (5.32)

where the inertia matrix M is derived via motor algebra as

M =


LT
1 (
∑

N)L1 . . . LT
5N5L1

...
. . .

...

LT
1N5L5 . . . LT

5N5L5

 (5.33)

and the vector B encapsulates the dynamic effects.

To reduce the chattering effect caused by the discontinuity of the sign function,

the switching term can be softened using a saturation function sat(s/ξ),

τs = Ks · sat
(
s

ξ

)
(5.34)

where ξ is a small positive boundary layer parameter (Rahmani et al., 2016).

57

Chapter 6

EXPERIMENTATION & RESULTS

Building on the theoretical foundation and kinematic principles established in earlier

chapters, this section explores the practical implementation of a 5-DOF worm robot

and evaluates its performance in both virtual (Isaac Sim) and physical environments.

The experiments aim to validate the inverse kinematics approach introduced earlier,

demonstrating the effectiveness of two different inchworm-inspired gaits. Addition-

ally, this chapter examines how environmental conditions, particularly variations in

friction, affect the robot’s locomotion. To enhance performance, various non-linear

control strategies are evaluated for their effectiveness in achieving precise and stable

joint positioning. Following the successful import of the URDF model into Isaac Sim

as shown in Figure 6.1, we conducted a comprehensive validation process. We visually

and numerically verified the robot’s physical dimensions, joint positions, and collision

meshes within the virtual environment against the original Solidworks model. To test

the simulation’s accuracy, we meticulously examined each joint’s range of motion,

Figure 6.1: 5 DOF Worm Robot in Isaac Sim

58

Figure 6.2: Gait 1

ensuring that Isaac Sim faithfully replicated the intended constraints and kinematics.

Any discrepancies, including misalignments of pivot axes or incorrect joint limits,

were promptly identified and rectified. This crucial step ensured that the simulations

realistically mirrored real-world behavior.

Inverse Kinematics Validation in Isaac Sim

Building upon the principles of inverse kinematics (IK) outlined in previous chap-

ters, two main inchworm gaits were developed in Isaac Sim to facilitate forward

movement. These gaits consist of three sequential phases: anchoring, extending, and

contracting. In the first phase (Figure 6.2), the head of the robot firmly anchors to

the ground while the remaining segments are pulled forward. Next, this trapezoidal

gait propagates toward the head in a wave-like motion as shown in Figure 6.3. Finally,

the tail anchors itself, allowing the entire robot to be propelled forward by a specified

distance. These gaits employ symmetrical joint angle distributions, which are com-

puted automatically by the IK algorithm. This method simplifies the robot’s control,

requiring only high-level input commands to indicate the desired displacement. Table

6.2 presents various joint values for a precise simulation environment that accurately

reflects the robot’s mass, joint, and surface characteristics.

59

Figure 6.3: Gait 2

Figure 6.4: Joint Angles for η = 2 cm

Range Sensor Integration in Isaac Sim

To enhance environmental awareness and enable autonomous navigation, an ultra-

sonic range sensor was mounted on the front section of the worm robot. This sensor

streams azimuth and zenith values based on the location of obstacles within the Isaac

Sim environment. It was secured in a way that minimizes additional inertia and in-

terference with the robot’s movement on its base link. This integration improves the

digital twin’s ability to realistically simulate robotic tasks, extending beyond basic

60

Table 6.1: Comparison of Desired and Actual Displacement Values in Isaac Sim

ηdesired [cm] θ [◦] ηactual [cm] Error e [cm]

0.2 9.29 0.219 0.019

0.8 18.66 0.786 −0.014

1.0 20.87 1.008 0.008

2.0 29.68 1.977 −0.023

3.0 36.57 3.087 0.087

4.0 42.48 4.000 0.000

5.0 47.78 5.005 0.005

10.0 69.89 10.142 0.142

12.0 77.73 11.989 −0.011

15.0 89.11 15.016 0.016

20.0 108.22 20.314 0.314

locomotion to more complex interaction scenarios. The goal is to continuously stream

data from a real ultrasonic or other suitable range sensor into this environment for

effective mapping. As illustrated in Figure 6.18, the robot approaches the obstacle,

and the initial white envelope of sensor input continuously changes color in the RGB

spectrum as the obstacle gets nearer.

MATLAB implementation

To quantitatively evaluate the performance of the motor-algebra controller against

three common baseline algorithms (PD, classical PID, and fractional-order PID) as

well as a sliding-mode controller (SMC) as shown in Chapter 5, we developed a

MATLAB script that simulates a simplified five-degree-of-freedom serial manipula-

61

Figure 6.5: Range Sensor Mounted on Robot

Figure 6.6: Locomotion Timeline with the Sensor

tor model (Bayro-Corrochano, 2020). For validation and demonstration purposes,

we implemented a locomotion gait characterized by a joint angle of θ = 45◦. The

physical parameters of the system, including the masses and lengths of the individual

links, were assigned based on the specifications outlined in Chapter 2. Desired joint

positions were set to a constant vector of θd = [0, 45, −45, −45, 45]T converted

internally to radians. Each controller was tuned to comparable bandwidth: PD gains

of Kp = 12, Kv = 4; PID gains of Kp = 0.4, Kd = 0.002, Ki = 0.05; FPID Kp = 1.7,

Kd = 0.002, Ki = 0.05, λ = 0.9 and µ = 0.2; and SMC parameters β = 5, Ks = 0.1,

ε = 10−2. Joint friction was modeled as viscous damping (0.5 Nms/rad per joint),

and Coriolis forces were neglected. The results are shown in Figures 6.7 and 6.8.

62

Figure 6.7: Joint Angles Based Comparison of Controller Performance

Figure 6.8: Joint Velocities Based Comparison of Controller Performance

63

Digital Twin Implementation

To evaluate robot performance comprehensively, extensive testing was conducted

using a digital twin on various surfaces, each with unique frictional properties. Four

distinct environments were chosen: a wooden surface with moderate friction, a rugged

fabric that increased frictional resistance, a smooth fabric that reduced friction and

irregularities, and paper, which demonstrated moderate friction conditions. The con-

trol systems discussed in previous chapters were applied to the 5-DOF robot to eval-

uate and validate controller performance. In the initial phase, the robot was kept

stationary while the joint angles were contracted, serving as a baseline check for the

controllers. For instance, with PD control parameters set at Kp = 0.7 and Kd =

0.009, minimal errors were observed, as evidenced by the corresponding error graph

(refer to Figure 5.1). Similar evaluations were conducted for the PID and FPID

controllers as shown in Figures 5.2 and 5.3 respectively, and their error graphs fur-

ther confirmed stable performance. Experimentally, the home or zero positions were

recorded as 119.52° for servo 1, 99.6° for servo 2, 131.52° for servo 3, 114.24° for servo

4, and 87.84° for servo 5. Following this initial validation, the inverse kinematic gait-

based approach described earlier was integrated with these controllers. To smooth

the gait movement, servo easing (Arduino, 2025) was initially implemented; however,

the above-mentioned control scheme was subsequently refined by directly applying

the PD, PID, and FPID controllers. Their performance was benchmarked using the

home position as the reference point (Refer Figures 6.9, 6.10, 6.11, 6.12, 6.13 and

6.14). The results indicated that on the moderately frictional wooden surface, the

robot performed tasks predictably and efficiently, closely aligning with theoretical

predictions and exhibiting minimal slippage. In contrast, the higher friction fabric

improved the robot’s anchoring stability, while the smooth fabric mitigated some

64

Figure 6.9: PD Controller With Inverse Kinematic Gaits (Trajectory)

challenges. The paper surface provided moderate friction and limited slippage.

To develop the final digital twin that implements these approaches on different

surfaces, we modeled the surface properties in Isaac Sim for roughly estimated com-

binations such as hardwood-steel, paper-steel, rugged cloth/canvas-steel, and smooth

fabric-steel. Both static and dynamic friction coefficients were closely estimated and

average combination mode was applied in the environment. These simulations were

carefully calibrated to reflect the frictional interactions expected in real-world scenar-

ios. Experimental data, presented both graphically and in tabular form, substanti-

ated the simulation findings by clearly demonstrating the direct relationship between

surface friction and robot performance.

65

Figure 6.10: PD Controller With Inverse Kinematic Gaits (Error)

Figure 6.11: PID Controller With Inverse Kinematic Gaits (Trajectory)

66

Figure 6.12: PID Controller With Inverse Kinematic Gaits (Error)

Figure 6.13: FPID Controller With Inverse Kinematic Gaits (Trajectory)

67

Figure 6.14: FPID Controller With Inverse Kinematic Gaits (Error)

Table 6.2: Comparison of Desired and Actual Displacement Values in Isaac Sim and

Real World (cms)

Material combination µs µk actualIsaacSim eIsaac Sim actualreal ereal

Steel-Wood 0.6 0.5 1.6 −0.4 4 2

Steel-Paper 0.4 0.3 2.4 0.4 9 5

Steel-Rugged Fabric 0.5 0.4 2.33 0.33 5 3

Steel-Smooth Fabric 0.3 0.15 2.35 0.35 3.7 1.7

68

(a) Gait 1

(b) Gait 2

Figure 6.15: Steel on Wood Implementation (µs = 0.6, µk = 0.5)

69

(a) Gait 1

(b) Gait 2

Figure 6.16: Steel on Paper Implementation (µs = 0.4, µk = 0.3)

70

(a) Gait 1

(b) Gait 2

Figure 6.17: Steel on Rugged Fabric Implementation (µs = 0.5, µk = 0.4)

71

(a) Gait 1

(b) Gait 2

Figure 6.18: Steel on Smooth Fabric Implementation (µs = 0.3, µk = 0.2)

72

Chapter 7

CONCLUSION & FUTURE WORK

This thesis has presented the design, modeling, control, and validation of a bio-

inspired inchworm robot capable of executing metachronal gait patterns using a five-

degree-of-freedom architecture. Drawing from the principles of bio-inspired robotics

and the locomotion strategies observed in nature, the proposed system demonstrates

how compliant and adaptive motion can be replicated in robotic platforms to navigate

complex environments. To achieve this, geometric algebra-based formulations were

applied to develop the kinematic and dynamic models of the robot, providing an

efficient and unified mathematical framework for analyzing its motion. These models

laid the foundation for implementing a variety of control strategies, including PD,

PID, fractional PID, and sliding mode control, which were systematically evaluated

for their performance in managing the robot’s nonlinear dynamics.

The future work aims to develop a system in which robots are controlled using

Large Language Models (LLMs). Current control strategies for worm robots rely

heavily on precise system modeling and predefined trajectory information, which

significantly limits their effectiveness in dynamic environments. While traditional

controllers, such as PID (Proportional-Integral-Derivative) and MPC (Model Pre-

dictive Control), perform well in structured settings, they often struggle to adapt

in real-time to complex and unknown terrains. To overcome these challenges, we

propose an LLM-based framework that allows worm robots to dynamically adjust

their locomotion based on task demands and environmental changes. Furthermore,

to improve the robot’s maneuverability and efficiency, we plan to incorporate an ad-

ditional degree of freedom (DoF) to facilitate sidewinding locomotion. Sidewinding

73

is a biomechanically inspired movement strategy commonly seen in snakes, enabling

efficient traversal across challenging terrains such as loose sand, rubble, and uneven

surfaces.

Finally, this thesis shows how a digital twin of the inchworm robot was developed

using Nvidia Isaacsim, which allows real-time simulation, control validation, and data

streaming between the physical and virtual robots. This integration of digital twin

technology not only improved the design and testing phases but also enabled predic-

tive insights into the robot’s behavior across diverse terrains. Through experimental

validation on various surfaces and comparison with simulation data, the effectiveness

of the metachronal gait locomotion strategies was successfully demonstrated.

74

REFERENCES

Ab Rashid, M. Z., M. F. Mohd Yakub, S. A. Zaki bin Shaikh Salim, N. Mamat,
S. M. Syed Mohd Putra and S. A. Roslan, “Modeling of the in-pipe inspection
robot: A comprehensive review”, Ocean Engineering 203, 107206, URL https:
//www.sciencedirect.com/science/article/pii/S0029801820302638 (2020).

Arduino, “Servoeasing”, URL https://docs.arduino.cc/libraries/servoeasin
g/, accessed: 2024-03-05 (2025).

Balla, Wahyu, M. Budiarto, B. Syahputra, Satria, D. Nurpriyanto, U. Dwiyanto,
Yusmaniar and Oktiawati, “Design and analysis of bio-inspired robotic systems
for search and rescue operations”, The Journal of Academic Science 1, 4, URL
http://thejoas.com/index.php/thejoas/article/view/47 (2024).

Bayro-Corrochano, E., Geometric Algebra Applications Vol. II: Robot Modelling and
Control (2020).

Bi, Z., Q. Zhou and H. Fang, “A worm-snake-inspired metameric robot for multi-
modal locomotion: Design, modeling, and unified gait control”, International Jour-
nal of Mechanical Sciences 254, 108436, URL https://www.sciencedirect.com/
science/article/pii/S0020740323003387 (2023).

Biller, B., X. Jiang, J. Yi, P. Venditti and S. Biller, “Simulation: the critical technol-
ogy in digital twin development”, in “2022 Winter Simulation Conference (WSC)”,
pp. 1340–1355 (2022).

Bogue, R., “Bioinspired designs impart robots with unique capabilities”, Industrial
Robot: the international journal of robotics research and application 46, 5, 561–
567, URL https://doi.org/10.1108/IR-05-2019-0100, publisher: Emerald
Publishing Limited (2019).

Boyer, F., C. Stefanini, F. Ruffier and S. Viollet, “Special issue featuring selected
papers from the international workshop on bio-inspired robots (nantes, france, 6–8
april 2011)”, Bioinspiration Biomimetics 7, 2, 020201, URL https://dx.doi.org
/10.1088/1748-3182/7/2/020201 (2012).

Chirikjian, G. S., Snakelike and Continuum Robots: A Review of Reviews, pp. 1–14
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2020), URL https://doi.org/10
.1007/978-3-642-41610-1_147-1.

Choset, H. M., D. Hull, J. E. Luntz, E. Shammas, T. Rached and C. C. Dent, “Search
and rescue with serpentine robots”, in “Unmanned Ground Vehicle Technology
II”, edited by G. R. Gerhart, R. W. Gunderson and C. M. Shoemaker, vol. 4024,
pp. 283 – 291, International Society for Optics and Photonics (SPIE, 2000), URL
https://doi.org/10.1117/12.391639.

Craig, J. J., Introduction to robotics: mechanics and control, 3/E (Pearson Education
India, 2009).

75

https://www.sciencedirect.com/science/article/pii/S0029801820302638
https://www.sciencedirect.com/science/article/pii/S0029801820302638
https://docs.arduino.cc/libraries/servoeasing/
https://docs.arduino.cc/libraries/servoeasing/
http://thejoas.com/index.php/thejoas/article/view/47
https://www.sciencedirect.com/science/article/pii/S0020740323003387
https://www.sciencedirect.com/science/article/pii/S0020740323003387
https://doi.org/10.1108/IR-05-2019-0100
https://dx.doi.org/10.1088/1748-3182/7/2/020201
https://dx.doi.org/10.1088/1748-3182/7/2/020201
https://doi.org/10.1007/978-3-642-41610-1_147-1
https://doi.org/10.1007/978-3-642-41610-1_147-1
https://doi.org/10.1117/12.391639

Crespi, N., A. T. Drobot and R. Minerva, The Digital Twin: What and Why?, pp.
3–20 (Springer International Publishing, Cham, 2023), URL https://doi.org/10
.1007/978-3-031-21343-4_1.

Davies, E., A. Garlow, S. Farzan, J. Rogers and A.-P. Hu, “Tarzan: Design, pro-
totyping, and testing of a wire-borne brachiating robot”, in “2018 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS)”, pp. 7609–7614
(2018).

Dineva, K. and T. Atanasova, “Modelling and simulation of cloud-based digital twins
in smart farming”, Proceedings of the International Multidisciplinary Scientific
GeoConference SGEM 22, 6.2, 243–250, URL https://epslibrary.at/sgem_j
research_publication_view.php?page=view&editid1=8926 (2022).

Dudek, G., M. Jenkin, C. Prahacs, A. Hogue, J. Sattar, P. Giguere, A. German,
H. Liu, S. Saunderson, A. Ripsman, S. Simhon, L.-A. Torres, E. Milios, P. Zhang
and I. Rekletis, “A visually guided swimming robot”, in “2005 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems”, pp. 3604–3609 (2005).

Fjerdingen, S. A., P. Liljebäck and A. A. Transeth, “A snake-like robot for internal
inspection of complex pipe structures (piko)”, in “2009 IEEE/RSJ International
Conference on Intelligent Robots and Systems”, pp. 5665–5671 (2009).

Fukuda, T., F. Chen and Q. Shi, “Special feature on bio-inspired robotics”, Applied
Sciences 8, 5, URL https://www.mdpi.com/2076-3417/8/5/817 (2018).

Fukuoka, Y. and H. Kimura, “Dynamic locomotion of a biomorphic quadruped
‘tekken’ robot using various gaits: Walk, trot, free-gait and bound”, Applied Bion-
ics and Biomechanics 6, 1, 743713, URL https://onlinelibrary.wiley.com/do
i/abs/10.1080/11762320902734208 (2009).

Ghanbari, A. and S. Noorani, “Optimal trajectory planning for design of a crawling
gait in a robot using genetic algorithm”, International Journal of Advanced Robotic
Systems 8, 1, 6, URL https://doi.org/10.5772/10526 (2011).

Ghanbari, A., A. Rostami, S. M. R. S. Noorani and M. M. S. Fakhrabadi, “Mod-
eling and simulation of inchworm mode locomotion”, in “Intelligent Robotics and
Applications”, edited by C. Xiong, Y. Huang, Y. Xiong and H. Liu, pp. 617–624
(Springer Berlin Heidelberg, Berlin, Heidelberg, 2008).

Gravish, N. and G. V. Lauder, “Robotics-inspired biology”, Journal of Experimental
Biology 221, 7, jeb138438, URL https://doi.org/10.1242/jeb.138438 (2018).

Gray, J., “The mechanism of locomotion in snakes”, Journal of Experimental Biology
23, 2, 101–120, URL https://doi.org/10.1242/jeb.23.2.101 (1946).

Hirose, S. and H. Yamada, “Snake-like robots [tutorial]”, IEEE Robotics Automation
Magazine 16, 1, 88–98 (2009).

76

https://doi.org/10.1007/978-3-031-21343-4_1
https://doi.org/10.1007/978-3-031-21343-4_1
https://epslibrary.at/sgem_jresearch_publication_view.php?page=view&editid1=8926
https://epslibrary.at/sgem_jresearch_publication_view.php?page=view&editid1=8926
https://www.mdpi.com/2076-3417/8/5/817
https://onlinelibrary.wiley.com/doi/abs/10.1080/11762320902734208
https://onlinelibrary.wiley.com/doi/abs/10.1080/11762320902734208
https://doi.org/10.5772/10526
https://doi.org/10.1242/jeb.138438
https://doi.org/10.1242/jeb.23.2.101

Hu, T., X. Lu and J. Liu, “Inchworm-like soft robot with multimodal locomotion using
an acrylic stick-constrained dielectric elastomer actuator”, Advanced Intelligent
Systems 5, 2, 2200209, URL https://advanced.onlinelibrary.wiley.com/doi
/abs/10.1002/aisy.202200209 (2023).

Hunt, A., A Biologically Inspired Robot for Assistance in Urban Search and Rescue,
Ph.D. thesis, Case Western Reserve University, URL https://etd.ohiolink.edu
/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=case1270137
669 (2010).

Jamoussi, A., “Robotic nde: A new solution for in-line pipe inspection”, Tech. rep.
(2005).

Kenett, R. S. and J. Bortman, “The digital twin in industry 4.0: A wide-angle per-
spective”, Quality and Reliability Engineering International 38, 3, 1357–1366, URL
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.2948 (2022).

Kulik, T., Z. Kazemi and P. G. Larsen, Security and Privacy-related Issues in a Digital
Twin Context, pp. 313–344 (Springer International Publishing, Cham, 2024), URL
https://doi.org/10.1007/978-3-031-66719-0_13.

Liljebäck, P., K. Y. Pettersen, Stavdahl and J. T. Gravdahl, “A simplified model of
planar snake robot locomotion”, in “2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems”, pp. 2868–2875 (2010).

Lipták, T., I. Virgala, P. Frankovský, P. Šarga, A. Gmiterko and L. Baločková, “A
geometric approach to modeling of four- and five-link planar snake-like robot”,
International Journal of Advanced Robotic Systems 13, 5, 1729881416663714, URL
https://doi.org/10.1177/1729881416663714 (2016).

Lock, R. J., S. C. Burgess and R. Vaidyanathan, “Multi-modal locomotion: from
animal to application”, Bioinspiration Biomimetics 9, 1, 011001, URL https:
//dx.doi.org/10.1088/1748-3182/9/1/011001 (2013).

Margheri, L., C. Laschi and B. Mazzolai, “Soft robotic arm inspired by the octopus: I.
from biological functions to artificial requirements”, Bioinspiration Biomimetics 7,
2, 025004, URL https://dx.doi.org/10.1088/1748-3182/7/2/025004 (2012).

McKinsey&Company, “What is digital-twin technology?”, URL https://www.mcki
nsey.com/featured-insights/mckinsey-explainers/what-is-digital-twi
n-technology (2024).

Medrano-Hermosillo, J. A., R. Lozoya-Ponce, J. Ramı́rez-Quintana and R. Baray-
Arana, “Forward kinematics analysis of 6-dof articulated robot using screw theory
and geometric algebra”, in “2022 XXIV Robotics Mexican Congress (COMRob)”,
pp. 1–6 (2022).

Mehringer, A., A. Kandhari, H. Chiel, R. Quinn and K. Daltorio, “An integrated com-
pliant fabric skin softens, lightens, and simplifies a mesh robot”, in “Biomimetic

77

https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200209
https://advanced.onlinelibrary.wiley.com/doi/abs/10.1002/aisy.202200209
https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=case1270137669
https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=case1270137669
https://etd.ohiolink.edu/acprod/odb_etd/etd/r/1501/10?clear=10&p10_accession_num=case1270137669
https://onlinelibrary.wiley.com/doi/abs/10.1002/qre.2948
https://doi.org/10.1007/978-3-031-66719-0_13
https://doi.org/10.1177/1729881416663714
https://dx.doi.org/10.1088/1748-3182/9/1/011001
https://dx.doi.org/10.1088/1748-3182/9/1/011001
https://dx.doi.org/10.1088/1748-3182/7/2/025004
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-digital-twin-technology
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-digital-twin-technology
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-digital-twin-technology

and Biohybrid Systems”, edited by M. Mangan, M. Cutkosky, A. Mura, P. F. Ver-
schure, T. Prescott and N. Lepora, pp. 315–327 (Springer International Publishing,
Cham, 2017).

Ngadi, H., A. Bounceur, M. Hammoudeh, S. Ouchani, M. Bezoui, R. Euler and
A. Laouid, “From simulation to digital twins, the case of internet of things re-
search and tools”, in “Proceedings of the 6th International Conference on Future
Networks & Distributed Systems”, ICFNDS ’22, p. 657–666 (Association for Com-
puting Machinery, New York, NY, USA, 2023), URL https://doi.org/10.1145/
3584202.3584302.

Niu, H., R. Feng, Y. Xie, B. Jiang, Y. Sheng, Y. Yu, H. Baoyin and X. Zeng, “Mag-
worm: A biomimetic magnet embedded worm-like soft robot”, Soft Robotics 8, 5,
507–518, URL https://doi.org/10.1089/soro.2019.0167, pMID: 32822273
(2021).

Noorani, M.-R. S., A. Ghanbari and S. Aghli, “Design and fabrication of a worm robot
prototype”, in “2015 3rd RSI International Conference on Robotics and Mechatron-
ics (ICROM)”, pp. 073–078 (2015).

NVIDIA Corporation, “Urdf importer”, URL https://docs.omniverse.nvidia.co
m/isaacsim/latest/features/environment_setup/ext_omni_isaac_urdf.htm
l, accessed: 2024-03-10 (2024).

NVIDIA Corporation, Bringing in Autonomous Systems, URL https://docs.omniv
erse.nvidia.com/digital-twins/latest/auto-sys.html, accessed: 2025-03-03
(2025).

Pettersen, K. Y., “Snake robots”, Annual Reviews in Control 44, 19–44, URL https:
//www.sciencedirect.com/science/article/pii/S1367578817301050 (2017).

Playter, R., M. Buehler and M. Raibert, “BigDog”, in “Unmanned Systems Tech-
nology VIII”, edited by G. R. Gerhart, C. M. Shoemaker and D. W. Gage, vol.
6230, p. 62302O, International Society for Optics and Photonics (SPIE, 2006),
URL https://doi.org/10.1117/12.684087.

Qi, Q., F. Tao, T. Hu, N. Anwer, A. Liu, Y. Wei, L. Wang and A. Nee, “Enabling
technologies and tools for digital twin”, Journal of Manufacturing Systems 58, 3–
21, URL https://www.sciencedirect.com/science/article/pii/S027861251
930086X, digital Twin towards Smart Manufacturing and Industry 4.0 (2021).

Rahmani, M., A. Ghanbari and M. M. Ettefagh, “Hybrid neural network fraction
integral terminal sliding mode control of an inchworm robot manipulator”, Me-
chanical Systems and Signal Processing 80, 117–136, URL https://www.scienc
edirect.com/science/article/pii/S0888327016300449 (2016).

Rahmani, M. and S. Redkar, “Deep neural data-driven koopman fractional control
of a worm robot”, Expert Systems with Applications 256, 124916, URL https:
//www.sciencedirect.com/science/article/pii/S0957417424017834 (2024a).

78

https://doi.org/10.1145/3584202.3584302
https://doi.org/10.1145/3584202.3584302
https://doi.org/10.1089/soro.2019.0167
https://docs.omniverse.nvidia.com/isaacsim/latest/features/environment_setup/ext_omni_isaac_urdf.html
https://docs.omniverse.nvidia.com/isaacsim/latest/features/environment_setup/ext_omni_isaac_urdf.html
https://docs.omniverse.nvidia.com/isaacsim/latest/features/environment_setup/ext_omni_isaac_urdf.html
https://docs.omniverse.nvidia.com/digital-twins/latest/auto-sys.html
https://docs.omniverse.nvidia.com/digital-twins/latest/auto-sys.html
https://www.sciencedirect.com/science/article/pii/S1367578817301050
https://www.sciencedirect.com/science/article/pii/S1367578817301050
https://doi.org/10.1117/12.684087
https://www.sciencedirect.com/science/article/pii/S027861251930086X
https://www.sciencedirect.com/science/article/pii/S027861251930086X
https://www.sciencedirect.com/science/article/pii/S0888327016300449
https://www.sciencedirect.com/science/article/pii/S0888327016300449
https://www.sciencedirect.com/science/article/pii/S0957417424017834
https://www.sciencedirect.com/science/article/pii/S0957417424017834

Rahmani, M. and S. Redkar, “Optimal dmd koopman data-driven control of a worm
robot”, Biomimetics 9, 11, URL https://www.mdpi.com/2313-7673/9/11/666
(2024b).

Rajamurugu, N. and M. K. Karthik, Introduction, History, and Concept of Digital
Twin, chap. 2, pp. 19–32 (John Wiley Sons, Ltd, 2022), URL https://onlineli
brary.wiley.com/doi/abs/10.1002/9781119842316.ch2.

Seeja, G., A. Selvakumar Arockia Doss and V. B. Hency, “A survey on snake robot
locomotion”, IEEE Access 10, 112100–112116 (2022).

Shah, P. and S. Agashe, “Review of fractional pid controller”, Mechatronics 38, 29–
41, URL https://www.sciencedirect.com/science/article/pii/S095741581
630068X (2016).

Shiotan, S., K. KEMMOTSU, T. TOMONAKA, S. ASANO, K. OONISHI and
R. HIURA, “World’s first full-fledged communication robot ”wakamaru” capable
of living with family and supporting persons”, Mitsubishi Heavy Industries, Ltd.
Technical Review 43, 1, URL https://www.mhi.co.jp/technology/review/pd
f/e431/e431044.pdf (2006).

Sugita, S., K. Ogami, G. Michele, S. Hirose and K. Takita, “A study on the mechanism
and locomotion strategy for new snake-like robot active cord mechanism – slime
model 1 acm-s1”, Journal of Robotics and Mechatronics 20, 2, 302–310 (2008).

Taubes, G., “Biologists and engineers create a new generation of robots that imitate
life”, Science 288, 5463, 80–83, URL https://www.science.org/doi/abs/10.1
126/science.288.5463.80 (2000).

Taylor, J. E., G. Bennett and N. Mohammadi, “Engineering smarter cities with smart
city digital twins”, Journal of Management in Engineering 37, 6, 02021001, URL
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ME.1943-5479.0000
974 (2021).

TechnoHacks, “Digital twins: The virtual replicas revolutionizing industries”, URL
https://www.technohacks.net/digital-twins-the-virtual-replicas-rev
olutionizing-industries/, accessed: 2024-03-05 (2024).

Transeth, A. A., R. I. Leine, C. Glocker and K. Y. Pettersen, “Non-smooth 3d mod-
eling of a snake robot with frictional unilateral constraints”, in “2006 IEEE Inter-
national Conference on Robotics and Biomimetics”, pp. 1181–1188 (2006).

Transeth, A. A., K. Y. Pettersen and P. Liljebäck, “A survey on snake robot modeling
and locomotion”, Robotica 27, 7, 999–1015 (2009).

Wakimoto, S., J. Nakajima, M. Takata, T. Kanda and K. Suzumori, “A micro
snake-like robot for small pipe inspection”, in “MHS2003. Proceedings of 2003
International Symposium on Micromechatronics and Human Science (IEEE Cat.
No.03TH8717)”, pp. 303–308 (2003).

79

https://www.mdpi.com/2313-7673/9/11/666
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119842316.ch2
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119842316.ch2
https://www.sciencedirect.com/science/article/pii/S095741581630068X
https://www.sciencedirect.com/science/article/pii/S095741581630068X
https://www.mhi.co.jp/technology/review/pdf/e431/e431044.pdf
https://www.mhi.co.jp/technology/review/pdf/e431/e431044.pdf
https://www.science.org/doi/abs/10.1126/science.288.5463.80
https://www.science.org/doi/abs/10.1126/science.288.5463.80
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ME.1943-5479.0000974
https://ascelibrary.org/doi/abs/10.1061/%28ASCE%29ME.1943-5479.0000974
https://www.technohacks.net/digital-twins-the-virtual-replicas-revolutionizing-industries/
https://www.technohacks.net/digital-twins-the-virtual-replicas-revolutionizing-industries/

Yamada, H. and S. Hirose, “Development of practical 3-dimensional active cord mech-
anism acm-r4”, Journal of Robotics and Mechatronics 18, 3, 305–311 (2006).

Zhang, B., Y. Fan, P. Yang, T. Cao and H. Liao, “Worm-like soft robot for
complicated tubular environments”, Soft Robotics 6, 3, 399–413, URL https:
//doi.org/10.1089/soro.2018.0088, pMID: 31180823 (2019).

80

https://doi.org/10.1089/soro.2018.0088
https://doi.org/10.1089/soro.2018.0088

APPENDIX A

RAW DATA AND CODE

Consult the attached files. The MATLAB and Python codes used in this thesis are
hosted on GitHub. Please visit Github to access these files. Note: MATLAB or
Python 3.0 is required to run the code.

81

https://github.com/menonjay85

	LIST OF TABLES
	LIST OF FIGURES
	INTRODUCTION
	Motivation
	Multi-Modal Locomotion in Nature
	Snake and Worm-Inspired Robotics
	Locomotion Mechanisms in Snake Robots
	Digital Twins in Robotics
	Relevance to Snake and Worm Robots
	Scope and Overview

	DESIGN
	Design Components

	KINEMATICS
	Forward Kinematics using Rotor Algebra G+3,0,0
	Rotor Definition

	Forward Kinematics Using Motor Algebra
	Motor Derivation for a Single Link
	Sequential Composition

	Forward Kinematics Using Screw Theory
	Inverse Kinematics Using a Trigonometric Approach for Mechatronal Gaits
	Gait 1 Derivation
	Gait 2 Derivation

	DYNAMICS
	Non-Linear Dynamics using Euler-Lagrange Equation
	Dynamics using Motor Algebra

	CONTROL
	PD Control
	PID Control
	Fractional PID Control
	Sliding Mode Control (SMC)

	EXPERIMENTATION & RESULTS
	Inverse Kinematics Validation in Isaac Sim
	Range Sensor Integration in Isaac Sim
	MATLAB implementation
	Digital Twin Implementation

	CONCLUSION & FUTURE WORK
	REFERENCES
	RAW DATA AND CODE

